
Component Adaptation + Open Protocols
= The PyProtocols Package

Release 1.0a0

Phillip J. Eby

October 10, 2004

Email: pje@telecommunity.com

Abstract

The Python Protocols package provides framework developers and users with tools for defining, declaring, and adapt-
ing components between interfaces, even when those interfaces are defined using different mechanisms.

CONTENTS

1 Reference 1
1.1 protocols — Protocol Definition, Declaration, and Adaptation. 1

Module Index 45

Index 47

i

ii

CHAPTER

ONE

Reference

1.1 protocols — Protocol Definition, Declaration, and Adaptation

The typical Python programmer is an integrator, someone who is connecting components from various
vendors. Often times the interfaces between these components require an intermediate adapter. Usually
the burden falls upon the programmer to study the interface exposed by one component and required by
another, determine if they are directly compatible, or develop an adapter. Sometimes a vendor may even
include the appropriate adapter, but then searching for the adapter and figuring out how to deploy the
adapter takes time.

— Martelli & Evans, PEP 246

This package builds on the object adaptation protocol presented in PEP 246 to make it easier for component authors,
framework suppliers, and other developers to:

• Specify what behavior a component requires or provides

• Specify how to adapt the interface provided by one component to that required by another

• Specify how to adapt objects of a particular type or class (even built-in types) to a particular required interface

• Automatically adapt a supplied object to a required interface, and

• Do all of the above, even when the components or frameworks involved were not written to take advantage of
this package, and even if the frameworks have different mechanisms for defining interfaces.

Assuming that a particular framework either already supports this package, or has been externally adapted to do so,
then framework users will typically use this package’s declaration API to declare what interfaces their classes or
objects provide, and/or to declare adaptations between interfaces or components.

For framework developers, this package offers an opportunity to replace tedious and repetitive type-checking code
(such asisinstance() , type() , hasattr() , or interface checks) with single calls toadapt() instead. In ad-
dition, if the framework has objects that represent interfaces or protocols, the framework developer can make them us-
able with this package’s declaration API by adding adapters for (or direct implementations of) theIOpenProtocol
interface provided herein.

If the developer of a framework does not do these things, it may still be possible for a framework user or third-party
developer to do them, in order to be able to use this package’s API. The user of a framework can often calladapt()
on a component before passing it to a non-adapting framework. And, it’s possible to externally adapt a framework’s
interface objects as well.

For example, theprotocols.zope support andprotocols.twisted support modules define adapters
that implementIOpenProtocol on behalf of Zope and TwistedInterface objects. This allows them to be used
as arguments to this package’s protocol declaration API. This works even though Zope and Twisted are completely

1

unaware of theprotocols package. (Of course, this does not give Zope or TwistedInterface objects all of the
capabilities thatProtocol objects have, but it does make most of their existing functionality accessible through the
same API.)

Finally, framework and non-framework developers alike may also wish to use theProtocol and Interface
base classes from this package to define protocols or interfaces of their own, or perhaps use some of the adaptation
mechanisms supplied here to implement “double dispatching” or the “visitor pattern”.

See Also:

PEP 246, “Object Adaptation”
PEP 246 describes an early version of the adaptation protocol used by this package.

1.1.1 Big Example 1 — A Python Documentation Framework

To provide the reader with a “feel” for the use and usefulness of theprotocols package, we will begin with a
motivating example: a simple Python documentation framework. To avoid getting bogged down in details, we will
only sketch a skeleton of the framework, highlighting areas where theprotocols package would play a part.

First, let’s consider the background and requirements. Python has many documentation tools available, ranging from
the built-in pydoc to third-party tools such asHappyDoc, epydoc, andSynopsis. Many of these tools generate
documentation from “live” Python objects, some using the Pythoninspect module to do so.

However, such tools often encounter difficulties in the Python 2.2 world. Tools that usetype() checks break with
custom metaclasses, and even tools that useisinstance() break when dealing with custom descriptor types. These
tools often handle other custom object types poorly as well: for example, ZopeInterface objects can cause some
versions ofhelp() andpydoc to crash!

The state of Python documentation tools is an example of the problem that both PEP 246 and theprotocols package
were intended to solve: introspection makes frameworks brittle and unextensible. We can’t easily plug new kinds of
“documentables” into our documentation tools, or control how existing objects are documented. These are exactly the
kind of problems that component adaptation and open protocols were created to address.

So let’s review our requirements for the documentation framework. First, it should work with existing built-in types,
without requiring a new version of Python. Second, it should allow users to control how objects are recognized and
documented. Third, we want the framework to be flexible enough to create different kinds of documentation, like
JavaDoc-style HTML, PDF reference manuals, plaintext online help or manpages, and so on – with whatever kinds of
documentable objects exist. If user A creates a new “documentable object,” and user B creates a new documentation
format, user C should be able to combine the two.

To design a framework with theprotocols package, the best place to start is often with an “ideal” interface. We
pretend that every object is already the kind of object that would do everything we need it to do. In the case of
documentation, we want objects to be able to tell us their name, what kind of object they should be listed as, their base
classes (if applicable), their call signature (if callable), and their contents (if a namespace).

So let’s define our ideal interface, usingprotocols.Interface . (Note: This is not the only way to define an
interface; we could also use an abstract base class, or other techniques. Interface definition is discussed further in
section 1.1.4.)

2 Chapter 1. Reference

from protocols import Interface

class IDocumentable(Interface):
"""A documentable object"""

def getKind():
"""Return "kind" string, e.g. "class", "interface", "package", etc."""

def getName():
"""Return an unqualified (undotted) name of the object"""

def getBases():
"""Return a sequence of objects this object is derived from
(or an empty sequence if object is not class/type-like)"""

def getSignature():
"""Return a description of the object’s call signature, or None"""

def getSummary():
"""Return a one-line summary description of the object"""

def getDoc():
"""Return documentation for the object (not including its contents)"""

def getContents(includeInherited):
"""Return list of (key,value) pairs for namespace contents, if any"""

Now, in the “real world,” no existing Python objects provide this interface. But, if every Python object did, we’d be
in great shape for writing documentation tools. The tools could focus purely on issues of formatting and organization,
not “digging up dirt” on what to say about the objects.

Notice that we don’t need to care whether an object is a type or a module or a staticmethod or something else. If a
future version of Python made modules callable or functions able to somehow inherit from other functions, we’d be
covered, as long as those new objects supported the methods we described. Even if a tool needs to care about the
“package” kind vs. the “module” kind for formatting or organizational reasons, it can easily be written to assume that
new “kinds” might still appear. For example, an index generator might just generate separate alphabetical indexes for
each “kind” it encounters during processing.

Okay, so we’ve envisioned our ideal scenario, and documented it as an interface. Now what? Well, we could start
writing documentation tools that expect to be given objects that support theIDocumentable interface, but that
wouldn’t be very useful, since we don’t have anyIDocumentable objects yet. So let’s define someadapters for
built-in types, so that we have something for our tools to document.

1.1. protocols — Protocol Definition, Declaration, and Adaptation 3

from protocols import advise
from types import FunctionType

class FunctionAsDocumentable(object):

advise(
Declare that this class provides IDocumentable for FunctionType
(we’ll explain this further in later sections)

provides = [IDocumentable],
asAdapterForTypes = [FunctionType],

)

def __init__(self, ob):
self.func = ob

def getKind(self):
return "function"

def getName(self):
return self.func.func_name

def getBases(self):
return ()

... etc.

TheFunctionAsDocumentable class wraps a function object with the methods of anIDocumentable , giving
us the behavior we need to document it. Now all we need to do is define similar wrappers for all the other built-in
types, and for any user-defined types, and then pick the right kind of wrapper to use when given an object to document.

But wait! Isn’t this just as complicated as writing a documentation tool the “old fashioned” way? We still have to
write code to get the data we need,andwe still need to figure out what code to use. Where’s the benefit?

Enter the PEP 246adapt() function. adapt() has two required arguments: an object to adapt, and apro-
tocol that you want it adapted to. Our documentation tool, when given an object to document, will simply call
adapt(object,IDocumentable) and receive an instance of the appropriate adapter. (Or, if the object has al-
ready declared that it supportsIDocumentable , we’ll simply get the same object back fromadapt() that we
passed in.)

But that’s only the beginning. If we create and distribute a documentation tool based onIDocumentable , then
anyone who creates a new kind of documentable object can write their own adapters, and register them via the
protocols package,without changing the documentation tool, or needing to give special configuration options
to the tool or call tool-specific registration functions. (Which means we don’t have to design or code those options or
registration functions into our tool.)

Also, lets say I use some kind of “finite state machine” library written by vendor A, and I’d like to use it with this new
documentation tool from vendor B. I can write and register adapters from such types as “finite state machine,” “state,”
and “transition” toIDocumentable . I can then use vendor B’s tool to document vendor A’s object types.

And it goes further. Suppose vendor C comes out with a new super-duper documentation framework with advanced
features. To use the new features, however, a more sophisticated interface thanIDocumentable is needed. So
vendor C’s tool requires objects to support his newISuperDocumentable interface. What happens then? Is the
new package doomed to sit idle because everybody else only hasIDocumentable objects?

Heck no. At least, not if vendor C starts by defining an adapter fromIDocumentable to ISuperDocumentable
that supplies reasonable default behavior for “older” objects. Then he or she writes adapters from built-in
types to ISuperDocumentable that provide more useful-than-default behaviors where applicable. Now, the

4 Chapter 1. Reference

super-framework is instantly usable with existing adapters for other object types. And, if vendor C defined
ISuperDocumentable asextendingIDocumentable , there’s another benefit, too.

Suppose vendor A upgrades their finite state machine library to include direct or adapted support for the new
ISuperDocumentable interface. Do I need to switch to vendor C’s documentation tool now? Must I continue
to maintain my FSM-to-IDocumentable adapters? No, to both questions. IfISuperDocumentable is a strict
extension ofIDocumentable , then I may use anISuperDocumentable anywhere anIDocumentable is
accepted. Thus, I can use vendor A’s new library with my existing (non-“super”) documentation tool from vendor B,
without needing my old adapters any more.

As you can see, replacing introspection with adaptation makes frameworks more flexible and extensible. It also
simplifies the design process, by letting you focus on what youwant to do, instead of on the details of which objects
are doing it.

As we mentioned at the beginning of this section, this example is only a sketch of a skeleton of a real documentation
framework. For example, a real documentation framework would also need to define anISignature interface for
objects returned fromgetSignature() . We’ve also glossed over many other issues that the designers of a real
documentation framework would face, in order to focus on the problems that can be readily solved with adaptable
components.

And that’s our point, actually. Every framework has two kinds of design issues: the ones that are specific to the
framework’s subject area, and the ones that would apply to any framework. Theprotocols package can save you
a lot of work dealing with the latter, so you can spend more time focusing on the former. Let’s start looking at how,
beginning with the concepts of “protocols” and “interfaces”.

1.1.2 Protocols and Interfaces

Many languages and systems provide ways of defininginterfaces that components provide or require. Some mech-
anisms are purely for documentation, others are used at runtime to obtain or verify an implementation. Typically,
interfaces are formal, intended for compiler-verified static type checking.

As a dynamic language, Python more often uses a looser notion of interface, known as aprotocol. While protocols
are often very precisely specified, their intended audience is a human reader or developer, not a compiler or automated
verification tool.

Automated verification tools, however, usually extract a high overhead cost from developers. The Java language, for
example, requires that all methods of an interface be defined by a class that claims to implement the interface, even if
those methods are never used in the program being compiled! And yet, the more importantdynamicbehavior of the
interface at runtime is not captured or verifiable by the compiler, so written documentation for human readers is still
required!

In the Python language, the primary uses for objects representing protocols or interfaces are at runtime, rather than at
compile time. Typically, such objects are used to ask for an implementation of the interface, or supplied by an object
to claim that it provides an implementation of that interface.

In principle, any Python object may be used as aprotocol object. However, for a variety of practical reasons, it is best
that protocol objects be hashable and comparable. That is, protocol objects should be usable as dictionary keys.

This still allows for a wide variety of protocol object implementations, however. One might assign meaning to the
number 42, for example, as referring to some hypothetical “hitchhiker” protocol. More realistically, the Microsoft
COM framework uses UUIDs (Universally Unique Identifiers) to identify interfaces. UUIDs can be represented as
Python strings, and thus are usable as protocol objects.

But a simple string or number is often not very useful as a protocol object. Aside from the issue of how to assign
strings or numbers to protocols, these passive protocol objects cannotdo anything, and by themselves they document
nothing.

There are thus two more common approaches to creating protocol objects in Python: classes (such as abstract base
classes or “ABCs”), andinterface objects. Interface objects are typically also defined using Pythonclass state-

1.1. protocols — Protocol Definition, Declaration, and Adaptation 5

ments, but use a custom metaclass to create an object that may not be usable in the same ways as a “real” Python
class. Many Python frameworks (such as Twisted, Zope, and this package) provide their own framework-specific
implementations of this “interface object” approach.

Since classes and most interface object implementations can be used as dictionary keys, and because their Python
source code can serve as (or be converted to) useful documentation, both of these approaches are viable ways to create
protocol objects usable with theprotocols package.

In addition, inheriting from a class or interface objects is a simple way to define implication relationships between
protocol objects. Inheriting from a protocol to create a new protocol means that the new protocolimplies the old
protocol. That is, any implementation or adaptation to the new protocol, is implied to be usable in a place where the
old protocol was required. (We will have more to say about direct and adapted implication relationships later on, in
section 1.1.7.)

At this point, we still haven’t described any mechanisms for making adapters available, or declaring what protocols
are supported by a class or object. To do that, we need to define two additional kinds of protocol objects, that have
more specialized abilities.

An adapting protocol is a protocol object that is potentially able to adapt components to support the protocol it
represents, or at least to recognize that a component supports (or claims to support) the protocol. To do this, an
adapting protocol must have an adapt method, as will be described in section 1.1.3. (Often, this method can
be added to an existing class, or patched into an interface object implementation.)

An open protocol is an adapting protocol that is also capable of accepting adapter declarations, and managing its
implication relationships with other protocols. Open protocols can be used with this package’s protocol declaration
API, as long as they implement (or can be adapted to) theIOpenProtocol interface, as will be described in section
1.1.5.

Notice that the concepts of protocol objects, adapting protocols, and open protocols are themselves “proto-
cols”. The protocols package supplies three interface objects that symbolize these concepts:IProtocol ,
IAdaptingProtocol , and IOpenProtocol , respectively. Just as the English phrases represent the concepts
in this text, the interface objects represent these concepts at runtime.

Whether a protocol object is as simple as a string, or as complex as anIOpenProtocol , it can be used to request
that a component provide (or be adaptable to) the protocol that it symbolizes. In the next section, we’ll look at how to
make such a request, and how the different kinds of protocol objects participate (or not) in fulfilling such requests.

1.1.3 adapt() and the Adaptation Protocol

Component adaptation is the central focus of theprotocols package. All of the package’s protocol declaration API
depends on component adaptation in order to function, and the rest of the package is just there to make it easier for
developers to use component adaptation in their frameworks and programs.

Component adaptation is performed by calling theadapt() function, whose design is based largely on the specifi-
cation presented in PEP 246:

adapt (component, protocol,[, default])
Return an implementation ofprotocol (a protocol object) forcomponent(any object). The implementation
returned may becomponent, or a wrapper that implements the protocol on its behalf. If no implementation is
available, returndefault. If no defaultis provided, raiseprotocols.AdaptationFailure .

The component adaptation process performed byadapt() proceeds in four steps:

1. If protocol is a class or type, andcomponentis an instance of that class or type, the component is returned
unchanged. (This quickly disposes of the most trivial cases).

2. If componenthas a conform method, it is called, passing in the protocol. If the method returns a value
other thanNone, it is returned as the result ofadapt() .

6 Chapter 1. Reference

3. If protocolhas an adapt method, it is called, passing incomponent. If the method returns a value other
thanNone, it is returned as the result ofadapt() .

4. Perform default processing as described above, returningdefault or raising
protocols.AdaptationFailure as appropriate.

This four-step process is called theadaptation protocol. Note that it can be useful even in the case where neither the
component nor the protocol object are aware that the adaptation protocol exists, and it gracefully degrades to a kind of
isinstance() check in that case. However, if either the component or the protocol object has been constructed (or
altered) so that it has the appropriateconform or adapt method, then much more meaningful results
can be achieved.

Throughout the rest of this document, we will say that a componentsupports a protocol, if calling
adapt(component,protocol) does not raise an error. That is, a component supports a protocol if its

conform method or the protocol’s adapt method return a non-None value.

This is different from saying that an objectprovides a protocol. An object provides a protocol if
adapt(ob,protocol) is ob . Thus, if an objectprovidesa protocol, itsupportsthe protocol, but an object
can also support a protocol by having an adapter that provides the protocol on its behalf.

Now that you know howadapt() works, you can actually make use of it without any of the other tools in the
protocols package. Just define your own conform and adapt methods, and off you go!

In practice, however, this is like creating a new kind of Python “number” type. That is, it’s certainly possible, but
can be rather tedious and is perhaps best left to a specialist. For that reason, theprotocols package supplies some
useful basic protocol types, and a “declaration API” that lets you declare how protocols, types, and objects should be
adapted to one another. The rest of this document deals with how to use those types and APIs.

You don’t need to know about those types and APIs to create your own kinds of protocols or components, just as you
don’t need to have studied Python’s numeric types or math libraries to create a numeric type of your own. But, if you’d
like your new types to interoperate well with existing types, and conform to users’ expectations of how such a type
behaves, it would be a good idea to be familiar with existing implementations, such as the ones described here.

Creating and Using Adapters, Components, and Protocols

Because the adaptation protocol is so simple and flexible, there are a few guidelines you should follow when using
adapt() or creating conform and adapt methods, to ensure that adapted objects are as usable as
unadapted objects.

First, adaptation should beidempotent. That is, if youadapt() an object to a protocol, and thenadapt() the return
value to the same protocol, the same object should be returned the second time. If you are using theprotocols
declaration API, it suffices to declare that instances of the adapter class provide the protocol they adapt to. That is, if
an adapter class provides protocol P for objects of type X, then it should declare that it provides protocol P.

If you are not using the declaration API, but relying only upon your customconform and adapt meth-
ods, you need to ensure that any adapters you return will return themselves when asked to support the protocol that
they were returned as an adapter for.

Second, adaptation is not automaticallysymmetric. That is, if I have an object X that provides protocol P1, and I
adapt() it to protocol P2, it is not guaranteed that I canadapt() the resulting object to P1 and receive the original
object. Ideally, someone who defines an adapter function would also declare an inverse adapter function to “unwrap”
an adapted object to its original identity. In practice, however, this can be complex, since the adapter might need some
fairly global knowledge of the system to know when it is better to unwrap and rewrap, and when it is better to further
wrap the existing wrapper.

Another issue that occurs with such wrapper-based adaptation, is that the wrapper does not have the same object
identity as the base object, and may not hash or compare equal to it, either. Further, it is not guaranteed that subsequent
calls toadapt() will yield the same wrapper object – in fact it’s quite unlikely.

1.1. protocols — Protocol Definition, Declaration, and Adaptation 7

These characteristics of adapted objects can be easily dealt with, however, by following a few simple rules:

• Alwaysadapt() from the “original” object you’re supplied; avoid adapting adaptations.

• Always pass “original” objects to functions or methods that expect their input to support more than one protocol;
only pass adapted objects to functions or methods that expect support for only one protocol.

• Always use “original” objects for equality or identity comparisons – or else ensure that callers know they will
need to provide you with an equal or identical adapter. (One good way to document this, is to include the
requirement in the definition of the interface or protocol that your system requires.)

In some respects, these rules are similar to dealing with objects in statically typed languages like Java. In Java, if
one simply has an “object”, it is not possible to perform operations specific to an interface, without first “casting” the
object to that interface. But, the object that was “cast” can’t be stored in the same variable that the “object” was in,
because it is of a different type.

8 Chapter 1. Reference

Replacing Introspection with Adaptation

To summarize: don’t type check.
— Alex Martelli, oncomp.lang.python

Component adaptation is intended to completely replace all non-cooperative introspection techniques, such as
type() , isinstance() , hasattr() , and even interface checks. Such introspection tends to limit framework
flexibility by unnecessarily closing policies to extension by framework users. It often makes code maintenance more
difficult as well, since such checks are often performed in more than one place, and must be kept in sync whenever a
new interface or type must be checked.

Some common use cases for such introspection are:

• To manually adapt a supplied component to a needed interface

• To select one of several possible behaviors, based on the kind of component supplied

• To select another component, or take some action, using information about the interfaces supported by the
supplied component

Obviously, the first case is handled quite well byadapt() , at least in an environment where it’s easy to declare
adapters between types and protocols. The second and third cases may at first seem to demand an ability to introspect
what interfaces are supported by a component. But they are almost always better served by defining new protocols
that supply the required behavior or metadata, and then requesting implementations of those protocols.

In all three use cases, replacing introspection with adaptation opens the framework to third party extensions, without
further modifications being required – and without the need to do extensive design or documentation of a new hook or
extension point to be added to the framework. Indeed, the availability of a standard mechanism for adaptation means
that the extension mechanism need only be documented once: right here in this document.

In section 1.1.11, we will present techniques for refactoring all three kinds of introspection code to purely adaptation-
driven code, showing how the flexibility and readability of the code improves in the process. But first, we will need to
cover how protocols and interfaces can be defined, declared, and adapted, using the API provided by theprotocols
package.

See Also:

isinstance() Considered Harmful
(http://www.canonical.org/˜kragen/isinstance/)

A brief critique of common justifications for using introspection

1.1. protocols — Protocol Definition, Declaration, and Adaptation 9

Differences Between protocols.adapt() and PEP 246

If you have read PEP 246 or are looking for an exact implementation of it, you should know that there are a few
differences between theprotocols implementation ofadapt() and the PEP 246 specification. If you don’t
care about these differences, you can skip this mini-appendix and proceed directly to section 1.1.4, “Defining and
Subclassing Interfaces”.

The first difference is thatTypeError is treated differently in each implementation. PEP 246 says that if a
conform or adapt method raises aTypeError , it should be treated in the same way as if the method

returnedNone. This was a workaround for the issue of accidentally calling an unbound class method, in the case
where a component or protocol supplied toadapt() was a class.

Theprotocols implementation ofadapt() attempts to catch such errors also, but will reraise any exception that
appears to come fromwithin the execution of the conform or adapt method. So if these methods raise
a TypeError , it will be passed through to the caller ofadapt . Thus, if you are writing one of these methods, you
should not raise aTypeError to signal the lack of an adaptation. Rather, you should returnNone.

Second,protocols.AdaptationFailure is raised when no adaptation is found, and no default is supplied,
rather than theTypeError specified by PEP 246. (Note: protocols.AdaptationFailure is a subclass of
TypeError andNotImplementedError , so code written to catch either of these errors will work.)

These differences are the result of experience using theprotocols package with PEAK, and advances in the Python
state-of-the-art since PEP 246 was written (over two years ago). We believe that they make the adaptation protocol
more robust, more predictable, and easier to use for its most common applications.

Convenience Adaptation API (NEW in 0.9.3)

As of version 0.9.3, PyProtocols supports the simplified adaptation API that was pioneered by Twisted, and later
adopted by Zope. In this simplified API, a protocol can be called, passing in the object to be adapted. So, for example,
instead of callingadapt(foo,IBar) , one may callIBar(foo) . The optionaldefault arguments can also be
supplied, following thecomponentparameter.

All of the protocol types supplied by PyProtocols now support this simpler calling scheme, except for
AbstractBase subclasses, because calling anAbstractBase subclass should create an instance of that sub-
class, not attempt to adapt an arbitrary object.

Notice, by the way, that you should only use this simplified API if you know for certain that the protocol supports it.
For example, it’s safe to invoke a known, constant interface object in this way. But if you’re writing code that may
receive a protocol object as a parameter or via another object, you should useadapt() instead, because you may
receive a protocol object that does not support this shortcut API.

10 Chapter 1. Reference

1.1.4 Defining and Subclassing Interfaces

The easiest way to define an interface with theprotocols package is to subclassprotocols.Interface .
Interface does not supply any data or methods of its own, so you are free to define whatever you need. There are
two common styles of defining interfaces, illustrated below:

from protocols import Interface, AbstractBase

"Pure" interface style

class IReadMapping(Interface):

"""A getitem-only mapping"""

def __getitem__(key):
"""Return value for key"""

Abstract Base Class (ABC) style

class AbstractMapping(AbstractBase):

"""A getitem-only mapping"""

def __getitem__(self,key):
"""Return value for key"""
raise NotImplementedError

The “pure” style emphasizes the interface as seen by the caller, and is not intended to be subclassed for implementation.
Notice that theself parameter is not included in its method definitions, becauseself is not supplied when calling
the methods. The “ABC” style, on the other hand, emphasizes implementation, as it is intended to be subclassed for
that purpose. Therefore, it includes method bodies, even for abstract methods. Each style has different uses: “ABC”
is a popular rapid development style, while the “pure” approach has some distinct documentation advantages.

protocols.AbstractBase may be used as a base class for either style, butprotocols.Interface is only
usable for the ”pure” interface style, as it supports the convenience adaptation API (see section 1.1.3).

(Note: both base classes use an explicit metaclass, so keep in mind that if you want to subclass an abstract
base for implementation using a different metaclass, you may need to create a third metaclass that combines
protocols.AbstractBaseMeta with your desired metaclass.)

Subclassing a subclass ofInterface (or AbstractBase) creates a new interface (or ABC) that implies the first
interface (or ABC). This means that any object that supports the second interface (or ABC), is considered to implicitly
support the first interface (or ABC). For example:

class IReadWriteMapping(IReadMapping):

"""Mapping with getitem and setitem only"""

def __setitem__(key,value):
"""Store value for key, return None"""

The IReadWriteMapping interface implies theIReadMapping interface. Therefore, any object that supports
IReadWriteMapping is understood to also support theIReadMapping interface. The reverse, however, is not
true.

1.1. protocols — Protocol Definition, Declaration, and Adaptation 11

Inheritance is only one way to declare that one interface implies another, however, and its uses are limited. Let’s
say for example, that some packageA supplies objects that supportIReadWriteMapping , while packageB needs
objects that supportIReadMapping . But each package declared its own interface, neither inheriting from the other.

As developers reading the documentation of these interfaces, it is obvious to us thatIReadWriteMapping implies
IReadMapping , because we understand what they do. But there is no way for Python to know this, unless we
explicitly state it, like this:

import protocols
from A import IReadWriteMapping
from B import IReadMapping

protocols.declareAdapter(
protocols.NO_ADAPTER_NEEDED,
provides = [IReadMapping],
forProtocols = [IReadWriteMapping]

)

In the above example, we use theprotocols declaration API to say that no adapter is needed to support the
B.IReadMapping interface for objects that already support theA.IReadWriteMapping interface.

At this point, if we supply an object that supportsIReadWriteMapping , to a function that expects an
IReadMapping , it should work, as long as we calladapt(ob,IReadMapping) (or IReadMapping(ob))
first, or the code we’re calling does so.

There are still other ways to declare that one interface implies another. For example, if the author of our exam-
ple packageB knew about package A and itsIReadWriteMapping interface, he or she might have defined
IReadMapping this way:

import protocols
from protocols import Interface

from A import IReadWriteMapping

class IReadMapping(Interface):

"""A getitem-only mapping"""

protocols.advise(
protocolIsSubsetOf = [IReadWriteMapping]

)

def __getitem__(key):
"""Return value for key"""

This is syntax sugar for creating the interface first, and then usingprotocols.declareAdapter(NO ADAPTERNEEDED).
Of course, you can only use this approach if you are the author of the interface! Otherwise, you must use
declareAdapter() after the fact, as in the previous example.

In later sections, we will begin looking at theprotocols declaration APIs – likedeclareAdapter() and
advise() – in more detail. But first, we must look briefly at the interfaces that theprotocols package expects
from the protocols, adapters, and other objects supplied as parameters to the declaration API.

12 Chapter 1. Reference

1.1.5 Interfaces Used by the Declaration API

Like any other API, theprotocols declaration API has certain expectations regarding its parameters. These expec-
tations are documented and referenced in code using interfaces defined in theprotocols.interfaces module.
(The interfaces are also exported directly from the top level of theprotocols package.)

You will rarely use or subclass any of these interface objects, unless you are customizing or extending the system.
Four of the interfaces exist exclusively for documentation purposes, while the rest are used inadapt() calls made
by the API.

First, let’s look at the documentation-only interfaces. It is not necessary for you to declare that an object supports these
interfaces, and theprotocols package never tries toadapt() objects to them.

IAdapterFactory
Up until this point, we’ve been talking about “adapters” rather loosely. TheIAdapterFactory interface
formalizes the concept. Anadapter factory is a callable object that accepts an object to be adapted, and returns
an object that provides the protocol on behalf of the passed-in object. Declaration API functions that take
“adapter” or “factory” arguments must be adapter factories.

The protocols package supplies two functions that provide this interface:NO ADAPTERNEEDEDand
DOES NOT SUPPORT. NO ADAPTERNEEDEDis used to declare that an object provides a protocol directly,
and thus it returns the object passed into it, rather than some kind of adapter.DOES NOT SUPPORTis used
to declare that an object does not support a protocol, even with an adapter. (Since this is the default case,
DOES NOT SUPPORTis rarely used, except to indicate that a subclass does not support an interface that one
of its superclasses does.)

IProtocol
This interface formalizes the idea of a “protocol object”. As you will recall from section 1.1.2, a protocol object
is any object that can be used as a Python dictionary key. The second argument toadapt() must be a protocol
object according to this definition.

IAdaptingProtocol
This interface formalizes the idea of an “adapting protocol”, specifically that it is a protocol object
(i.e., it provides IProtocol) that also has an adapt method as described in section 1.1.3.
IAdaptingProtocol is a subclass ofIProtocol , so of courseadapt() accepts such objects as pro-
tocols.

IImplicationListener
This interface is for objects that want to receive notification when new implication relationships (i.e. adapters)
are registered between two protocols. If you have objects that want to keep track of what interfaces they support,
you may want those object to implement this interface so they can be kept informed of new protocol-to-protocol
adapters.

The other three interfaces are critical to the operation of the declaration API, and thus must be supported by objects
supplied to it. Theprotocols package supplies and registers various adapter classes that provide these interfaces
on behalf of many commonly used Python object types. So, for each interface, we will list “known supporters” of that
interface, whether they are classes supplied byprotocols , or built-in types that are automatically adapted to the
interface.

We will not, however, go into details here about the methods and behavior required by each interface. (Those details
can be found in section 1.1.9.)

IOpenProtocol
This interface formalizes the “open protocol” concept that was introduced in section 1.1.2. An
IOpenProtocol is anIAdaptingProtocol that can also accept declarations made by theprotocols
declaration API.

1.1. protocols — Protocol Definition, Declaration, and Adaptation 13

The protocols package supplies two implementations of this interface:Protocol and
InterfaceClass . Thus, anyInterface subclass orProtocol instance is automatically consid-
ered to provideIOpenProtocol . Note: Interface is an instance ofInterfaceClass , and thus
providesIOpenProtocol . But if you create an instance of anInterface , that object does not provide
IOpenProtocol , because the interfaces provided by an object and its class (or its instances) can be different.

In addition to its built-in implementations, theprotocols package also supplies and can declare adapter
factories that adapt Zope X3 and Twisted’s interface objects to theIOpenProtocol interface, thus allowing
you to use Zope and Twisted interfaces in calls to the declaration API. Similar adapters for other frameworks’
interfaces may be added, if there is sufficient demand and/or contributed code, and the frameworks’ authors do
not add the adapters to their frameworks.

IOpenImplementor
An IOpenImplementor is a class or type that can be told (via the declaration API) what protocols its in-
stances provide (or support via anIAdapterFactory). Note that this implies that the instances have a

conform method, or else they would not be able to telladapt() about the declared support!

Support for this interface is optional, since types that don’t support it can still have their instances be adapted
by IOpenProtocol objects. Theprotocols package does not supply any implementations or adapters
for this interface, either. It is intended primarily as a hook for classes to be able to receive notification about
protocol declarations for their instances.

IOpenProvider
Because objects’ behavior usually comes from a class definition, it’s not that often that you will declare that a
specific object provides or supports an interface. But objects like functions and modules do not have a class
definition, and classes themselves sometimes provide an interface. (For example, one could say that class
objects provide anIClass interface.) So, the declaration API needs to also be able to declare what protocols
an individual object (such as a function, module, or class) supports or provides.

That’s what theIOpenProvider interface is for. AnIOpenProvider is an object with a conform
method, that can be told (via the declaration API) what protocols it provides (or supports via an
IAdapterFactory).

Notice that this is different fromIOpenImplementor , which deals with an class or type’s instances.
IOpenProvider deals with the object itself. A single object can potentially be both anIOpenProvider
and anIOpenImplementor , if it is a class or type.

Theprotocols package supplies and declares an adapter factory that can adapt most Python objects to support
this interface, assuming that they have adict attribute. Thus, it is acceptable to pass a Python function,
module, or instance of a “classic” class to any declaration API that expects anIOpenProvider argument.

We’ll talk more about making protocol declarations for individual objects (as opposed to types) in section 1.1.6,
“Protocol Declarations for Individual Objects”.

14 Chapter 1. Reference

1.1.6 Declaring Implementations and Adapters

There are three kinds of relationships that a protocol can participate in:

• A relationship between a class or type, and a protocol its instances provide or can be adapted to,

• A relationship between an instance, and a protocol it provides or can be adapted to, and

• A relationship between a protocol, and another protocol that it implies or can be adapted to.

Each of these relationships is defined by asource(a type, instance or protocol), adestination (desired) protocol, and
anadapter factory used to convert from one to the other. If no adapter is needed, we can say that the adapter factory
is the specialNO ADAPTERNEEDEDfunction.

To declare relationships like these, theprotocols declaration API provides three “primitive” dec-
laration functions. Each accepts a destination protocol (that must support theIOpenProtocol
interface), an adapter factory (orNO ADAPTERNEEDED), and a source (type, instance, or proto-
col). These three functions aredeclareAdapterForType() , declareAdapterForObject() , and
declareAdapterForProtocol() , respectively.

You will not ordinarily use these primitives, however, unless you are customizing or extending the framework. It
is generally easier to call one of the higher level functions in the declaration API. These higher-level functions may
make several calls to the primitive functions on your behalf, or supply useful defaults for certain parameters. They are,
however, based entirely on the primitive functions, which is important for customizations and extensions.

The next higher layer of declaration APIs are the explicit declaration functions:declareImplementation ,
declareAdapter , andadviseObject . These functions are structured to support the most common declara-
tion use cases.

For declaring protocols related to a type or class:

declareImplementation (typ [, instancesProvide=[]] [, instancesDoNotProvide=[]])
Declare that instances of class or typetyp do or do not provide implementations of the specified protocols.in-
stancesProvideandinstancesDoNotProvidemust be sequences of protocol objects that provide (or are adaptable
to) theIOpenProtocol interface, such asprotocols.Interface subclasses, orInterface objects
from Zope or Twisted.

This function is shorthand for callingdeclareAdapterForType() with NO ADAPTERNEEDEDand
DOES NOT SUPPORTas adapters from the type to each of the specified protocols. Note, therefore, that the
listed protocols must be adaptable toIOpenProtocol . SeedeclareAdapterForType() in section
1.1.9 for details.

For declaring protocols related to a specific, individual instance:

adviseObject (ob [, provides=[]] [, doesNotProvide=[]])
Declare thatob provides (or does not provide) the specified protocols. This is shorthand for call-
ing declareAdapterForObject() with NO ADAPTERNEEDED and DOES NOT SUPPORTas
adapters from the object to each of the specified protocols. Note, therefore, thatob may need to
support IOpenProvider , and the listed protocols must be adaptable toIOpenProtocol . See
declareAdapterForObject() in section 1.1.9 for details. Also, see section 1.1.6, “Protocol Declara-
tions for Individual Objects”, for more information on usingadviseObject .

And for declaring all other kinds of protocol relationships:

declareAdapter (factory, provides,[, forTypes=[]] [, forProtocols=[]] [, forObjects=[]])
Declare thatfactory is anIAdapterFactory whose return value provides the protocols listed inprovidesas
an adapter for the classes/types listed inforTypes, for objects providing the protocols listed inforProtocols, and
for the specific objects listed inforObjects.

This function is shorthand for calling the primitive declaration functions for each of the protocols listed in
providesand each of the sources listed in the respective keyword arguments.

1.1. protocols — Protocol Definition, Declaration, and Adaptation 15

Although these forms are easier to use than rawdeclareAdapterForX calls, they still require explicit reference
to the types or objects involved. For the most common use cases, such as declaring protocol relationships to a class, or
declaring an adapter class, it is usually easier to use the “magic”protocols.advise() function, which we will
discuss next.

Convenience Declarations in Class, Interface and Module Bodies

Adapters, interfaces, and protocol implementations are usually defined in Pythonclass statements. To make it
more convenient to make protocol declarations for these classes, theprotocols package supplies theadvise()
function. This function can make declarations about a class, simply by being called from the body of that class. It can
also be called from the body of a module, to make a declaration about the module.

advise (**kw)
Declare protocol relationships for the containing class or module. All parameters must be supplied as keyword
arguments. This function must be called directly from a class or module body, or aSyntaxError results at
runtime. Different arguments are accepted, according to whether the function is called within a class or module.

When invoked in the top-level code of a module, this function only accepts themoduleProvides keyword
argument. When invoked in the body of a class definition, this function accepts any keyword argumentsexcept
moduleProvides . The complete list of keyword arguments follows. Unless otherwise specified, protocols
must support theIOpenProtocol interface.

Note: When used in a class body, this function works by temporarily replacing themetaclass of the
class. If your class sets an explicit metaclass , it must do sobeforeadvise() is called, or the protocol
declarations will not occur!

Keyword arguments accepted byadvise() :

instancesProvide =protocols
A sequence of protocols that instances of the containing class provide, without needing an adapter. Supplying
this argument is equivalent to callingdeclareImplementation(containing class, protocols) .

instancesDoNotProvide =protocols
A sequence of protocols that instances of the containing class do not provide. This is pri-
marily intended for “rejecting” protocols provided or supported by base classes of the contain-
ing class. Supplying this argument is equivalent to callingdeclareImplementation(containing
class,instancesDoNotProvide= protocols) .

asAdapterForTypes =types
Declare the containing class as an adapter fortypes, to the protocols listed by theinstancesProvide
argument (which must also be supplied). Supplying this argument is equivalent to calling
declareAdapter(containing class, instancesProvide, forTypes= types) . (Note that this means the
containing class must be an object that providesIAdapterFactory ; i.e., its constructor should accept being
called with a single argument: the object to be adapted.)

asAdapterForProtocols =protocols
Declare the containing class as an adapter forprotocols, to the protocols listed by theinstancesProvide
argument (which must also be supplied). Supplying this argument is equivalent to calling
declareAdapter(containing class, instancesProvide, forProtocols= types) . (Note that this means
the containing class must be an object that providesIAdapterFactory ; i.e., its constructor should accept
being called with a single argument: the object to be adapted.)

factoryMethod = methodName
New in version 0.9.1. When usingasAdapterForTypes or asAdapterForProtocols , you can also
supply a factory method name, using this keyword. The method named must be aclassmethod, and it will be
used in place of the class’ normal constructor. (Note that this means the named method must be able to be called
with a single argument: the object to be adapted.)

16 Chapter 1. Reference

protocolExtends =protocols
Declare that the containing class is a protocol that extends (i.e., implies) the listed protocols. This keyword
argument is intended for use inside class statements that themselves define protocols, such asInterface sub-
classes, and that need to “inherit” from incompatible protocols. For example, anInterface cannot directly
subclass a Zope interface, because their metaclasses are incompatible. But usingprotocolExtends works
around this:

import protocols
from mypackage import ISomeInterface
from zope.something.interfaces import ISomeZopeInterface

class IAnotherInterface(ISomeInterface):
protocols.advise(

protocolExtends = [ISomeZopeInterface]
)
#... etc.

In the above example, IAnotherInterface wants to extend bothISomeInterface and
ISomeZopeInterface , but cannot do so directly because the interfaces are of incompatible types.
protocolExtends informs the newly created interface that it impliesISomeZopeInterface , even
though it isn’t derived from it.

Using this keyword argument is equivalent to callingdeclareAdapter(NO ADAPTERNEEDED, proto-
cols, forProtocols=[containing class]) . Note that this means that the containing class must be an object
that supportsIOpenProtocol , such as anInterface subclass.

protocolIsSubsetOf =protocols
Declare that the containing class is a protocol that is implied (extended) by the listed protocols. This is just
like protocolExtends , but in the “opposite direction”. It allows you to declare (in effect) that some other
interface is actually a subclass of (extends, implies) this one. See the examples in section 1.1.4 for illustration.

Using this keyword argument is equivalent to callingdeclareAdapter(NO ADAPTERNEEDED,
[containing class], forProtocols= protocols) .

equivalentProtocols =protocols
New in version 0.9.1. Declare that the containing class is a protocol that is equivalent to the listed protocols.
That is, the containing protocol both implies, and is implied by, the listed protocols. This is a convenience
feature intended mainly to support the use of generated protocols.

Using this keyword is equivalent to using both theprotocolExtends andprotocolIsSubsetOf key-
words, with the supplied protocols.

classProvides =protocols
Declare that the containing classitself provides the specified protocols. Supplying this argument is equivalent
to callingadviseObject(containing class, protocols) . Note that this means that the containing class may
need to support theIOpenProvider interface. Theprotocols package supplies default adapters to support
IOpenProvider for both classic and new-style classes, as long as they do not have customconform
methods. See section 1.1.6, “Protocol Declarations for Individual Objects” for more details.

classDoesNotProvide =protocols
Declare that the containing classitself does not provide the specified protocols. This is for classes that need
to reject inherited class-levelclassProvides declarations. Supplying this argument is equivalent to calling
adviseObject(containing class, doesNotProvide= protocols) , and theIOpenProvider require-
ments mentioned above forclassProvides apply here as well.

moduleProvides =protocols (module context only)
A sequence of protocols that the enclosing module provides. Equivalent toadviseObject(containing mod-
ule, protocols) .

1.1. protocols — Protocol Definition, Declaration, and Adaptation 17

Protocol Declarations for Individual Objects

Because objects’ behavior usually comes from a class definition, it’s not too often that you will declare that an individ-
ual object provides or supports an interface, as opposed to making a blanket declaration about an entire class or type
of object. But objects like functions and modules do nothavea class definition that encompasses their behavior, and
classes themselves sometimes provide an interface (e.g. viaclassmethod objects).

So, the declaration API needs to also be able to declare what protocols an individual object (such
as a function, module, or class) supports or provides. This is whatadviseObject() and the
classProvides /classDoesNotProvide keywords ofadvise() do.

In most cases, for an object to be usable withadviseObject() , it must support theIOpenProvider interface.
Since many of the objects one might wish to use withadviseObject() (such as modules, functions, and classes)
do not directly provide this interface, theprotocols.classic module supplies and declares an adapter factory
tha can adapt most Python objects to support this interface, assuming that they have adict attribute.

This default adapter works well for many situations, but it has some limitations you may need to be aware of.
First, it works by “poking” a new conform method into the adapted object. If the object already has a

conform method, aTypeError will be raised. So, if you need an object to be anIOpenProvider , but it
has a conform method, you may want to have its class includeProviderMixin among its base classes, so
that your objects won’t rely on the default adapter forIOpenProvider . (SeeProviderMixin in section 1.1.9
for more on this.)

Both the default adapter andProviderMixin support inheritance of protocol declarations, when the ob-
ject being adapted is a class or type. In this way,advise(classProvides= protocols) declara-
tions (or adviseObject(someClass, protocols) calls) are inherited by subclasses. Of course, you
can always reject inherited protocol information usingadvise(classDoesNotProvide= protocols) or
adviseObject(newClass,doesNotProvide= protocols) .

Both the default adapter andProviderMixin work by keeping a mapping of protocols to adapter factories. Keep
in mind that this means the protocols and adapter factories will continue to live until your object is garbage collected.
Also, that means for your object to be pickleable, all of the protocols and adapter factories used must be pickleable.
(This latter requirement can be quite difficult to meet, since composed adapter factories are dynamically created
functions at present.)

Note that none of these restrictions apply if you are only using declarations about types and protocols, as opposed to
individual objects. (Or if you only make individual-object declarations for functions, modules, and classes.) Also note
that if you have some objects that need to dynamically support or not support a protocol on a per-instance basis, then
adviseObject() is probably not what you want anyway! Instead, give your objects’ class aconform ()
method that does the right thing when the object is asked to conform to a protocol.adviseObject() is really
intended for adding metadata to objects that “don’t know any better”.

In general, protocol declarations are astaticmechanism: they cannot be changed or removed at will, only successively
refined. All protocol declarations made must be consistent with the declarations that have already been made. This
makes them unsuitable as a mechanism for dynamic behavior such as supporting a protocol based on an object’s
current state.

In the next section, we’ll look more at the static nature of declarations, and explore what it means to make conflicting
(or refining) protocol declarations.

18 Chapter 1. Reference

1.1.7 Protocol Implication and Adapter Precedence

So far, we’ve only dealt with simple one-to-one relationships between protocols, types, and adapter factories. We
haven’t looked, for example, at what happens when you define that class X instances provide interface IX, that AXY is
an adapter factory that adapts interface IX to interface IY, and class Z subclasses class X. (As you might expect, what
happens is that Z instances will be wrapped with an AXY adapter when you calladapt(instanceOfZ, IY) .)

Adaptation relationships declared via the declaration API aretransitive. This means that if you declare an adaptation
from item A to item B, and from item B to item C, then there is anadapter path from A to C. An adapter path
is effectively a sequence of adapter factories that can be applied one by one to get from a source (type, object, or
protocol) to a desired destination protocol.

Adapter paths are automatically composed by the types, objects, and protocols used with the declaration API, using
thecomposeAdapters() function. Adapter paths are said to have adepth, which is the number of steps taken to
get from the source to the destination protocol. For example, if factory AB adapts from A to B, and factory BC adapts
from B to C, then an adapter factory composed of AB and BC would have a depth of 2. However, if we registered
another adapter, AC, that adapts directly from A to C, this adapter path would have a depth of 1.

Naturally, adapter paths with lesser depth are more desirable, as they are less likely to be a “lossy” conversion, and
are more likely to be efficient. For this reason, shorter paths take precedence over longer paths. Whenever an adapter
factory is declared between two points that previously required a longer path, all adapter paths that previously included
the longer path segment are updated to use the newly shortened route. Whenever an adapter factory is declared that
would lengthenan existing path, it is ignored.

The net result is that the overall network of adapter paths will tend to stabilize over time. As an added benefit, it is safe
to define circular adapter paths (e.g. A to B, B to C, C to A), as only the shortest useful adapter paths are generated.

We’ve previously mentioned the special adapter factoriesNO ADAPTERNEEDEDand DOES NOT SUPPORT.
There are a couple of special rules regarding these adapters that we need to add. Any adapter path that contains
DOES NOT SUPPORTcan be reduced to a single instance ofDOES NOT SUPPORT, and any adapter path that con-
tainsNO ADAPTERNEEDEDis equivalent to the same adapter path without it. These changes can be used to simplify
adapter paths, but are only taken into consideration when comparing paths, if the “unsimplified” version of the adapter
paths are the same length.

Lets’ consider two adapter paths between A and C. Each proceeds by way of B. (i.e., they go from A to B to C.)
Which one is preferable? Both adapters have a depth of 2, because there are two steps (A to B, B to C). But
suppose one adapter path contains two arbitrary adapter factories, and the other is composed of one factory plus
NO ADAPTERNEEDED. Clearly, that path is superior, since it effectively contains only one adapter instead of two.

This simplification, however, canonlybe applied when the unsimplified paths are of the same length. Why? Consider
our example of two paths from A to B to C. If someone declares a direct path from A to C (i.e. not via B or any other
intermediate protocol), we want this path to take precedence over an indirect path, even if both paths “simplify” to the
same length. Only if we are choosing between two paths with the same number of steps can we can use the length of
their simplified forms as a “tiebreaker”.

So what happens when choosing between paths of the same number of steps and the same simplified length? A
TypeError occurs, unless one of these conditions applies:

• One of the paths simplifies toDOES NOT SUPPORT, in which case the other path is considered preferable.
(Some ability is better than none.)

• One of the paths simplifies toNO ADAPTERNEEDED, in which case it is considered preferable. (It’s better
not to have to adapt.)

• Both of the paths are the same object, in which case no change is required to the existing path. (The declaration
is redundant.)

Notice that this means that it is not possible to override an existing adapter path unless you are improving on it a way
visible to the system. This doesn’t mean, however, that you can’t take advantage of existing declarations, while still

1.1. protocols — Protocol Definition, Declaration, and Adaptation 19

overriding some of them.

Suppose that there exists a set of existing adapters and protocols defined by some frameworks, and we are writing
an application using them. We would like, however, for our application to be able to override certain existing rela-
tionships. Say for example that we’d like to have an adapter path from A to C that’s custom for our application, but
we’d like to “inherit” all the other adaptations to C, so that by default any C implementation is still useful for our
application.

The simple solution is to define a new protocol D as asubset of protocol C. This is effectively saying that
NO ADAPTERNEEDEDcan adapt from C to D. All existing declarations adapting to C, are now usable as adaptations
to D, but they will have lower precedence than any direct adaptation to D. So now we define our direct adaptation from
A to D, and it will take precedence over any A to C to D path. But, any existing path that goes to C will be “inherited”
by D.

Speaking of inheritance, please note that inheritance between types/classes has no effect on adapter path depth calcu-
lations. Instead, any path defined for a subclass takes absolute precedence over paths defined for a superclass, because
the subclass is effectively a different starting point. In other words, if A is a class, and Q subclasses A, then an adapter
path between Q and some protocol is a different path than the path between A and that protocol. There is no compari-
son between the two, and no conflict. However, if a path from Q to a desired protocol does not exist, then the existing
best path for A will be used.

Sometimes, one wishes to subclass a class without taking on its full responsibilities. It may be that we want Q
to use A’s implementation, but we do not want to support some of A’s protocols. In that case, we can declare
DOES NOT SUPPORTadapters for those protocols, and these will ensure that the corresponding adapter paths for A
are not used.

This is calledrejecting inherited declarations. It is not, generally speaking, a good idea. If you want to use an
existing class’ implementation, but do not wish to abide by its contracts (protocols), you should be usingdelegation
rather than inheritance. That is, you should define your new class so that it has an attribute that is an instance of the old
class. For example, if you are tempted to subclass Python’s built-in dictionary type, but you do not want your subclass
to reallybea dictionary, you should simply have an attribute that is a dictionary.

Because rejecting inherited declarations is a good indication that inheritance is being used improperly, the
protocols package does not encourage the practice. Declaring a protocol asDOES NOT SUPPORTdoes not
propagate to implied protocols, so every rejected protocolmustbe listed explicitly. If class A provided protocol B,
and protocol B derived from (i.e. implied) protocol C, then you must explicitly reject both B and C if you do not want
your subclass to support them.

See Also:

The logic of composing and comparing adapter paths is implemented via thecomposeAdapters() and
minimumAdapter() functions in theprotocols.adapters module. See section 1.1.9 for more details on
these and other functions that relate to adapter paths.

20 Chapter 1. Reference

1.1.8 Dynamic Protocols (NEW in 0.9.1)

For many common uses of protocols, it may be inconvenient to subclassprotocols.Interface or to manually
create aProtocol instance. So, theprotocols package includes a number of utility functions to make these uses
more convenient.

Defining a protocol based on a URI or UUID

protocolForURI (uri)
New in version 0.9.1. Return a protocol object that represents the supplied URI or UUID string. It is guaranteed
that you will receive the same protocol object if you call this routine more than once with equal strings. This
behavior is preserved even across pickling and unpickling of the returned protocol object.

The purpose of this function is to permit modules to refer to protocols defined in another module, that may or
may not be present at runtime. To do this, a protocol author can declare that their protocol is equivalent to a URI
string:

from protocols import advise, Interface, protocolForURI

class ISomething(Interface):
advise(

equivalentProtocols = [protocolForURI("some URI string")]
)
etc...

Then, if someone wishes to use this protocol without importingISomething (and thereby becoming depen-
dent on the module that provides it), they can do something like:

from protocols import advise, protocolForURI

class MyClass:
advise(

provides = [protocolForURI("some URI string")]
)
etc...

Thus, instances ofMyClass will be considered to supportISomething , if needed. But, ifISomething
doesn’t exist, no error occurs.

Defining a protocol as a subset of an existing type

protocolForType (baseType,[methods=(), implicit=False])
Return a protocol object that represents the subset ofbaseTypedenoted bymethods. It is guaranteed that you
will receive the same protocol object if you call this routine more than once with eqivalent paremeters. This
behavior is preserved even across pickling and unpickling of the returned protocol object.

baseTypeshould be a type object, andmethodsshould be a sequence of attribute or method names. (The order
of the names is not important.) Theimplicit flag allows adapting objects that don’t explicitly declare support for
the protocol. (More on this later.)

Typical usage of this function is to quickly define a simple protocol based on a Python built-in type such as
list , dict , or file :

IReadFile = protocols.protocolForType(file, [’read’,’close’])
IReadMapping = protocols.protocolForType(dict, [’__getitem__’])

The advantage of using this function instead of creating anInterface subclass is that users do not
need to import your specificInterface definition. As long as they declare support for a proto-

1.1. protocols — Protocol Definition, Declaration, and Adaptation 21

col based on the same type, and with at least the required methods, then their object will be consid-
ered to support the protocol. For example, declaring that you supportprotocolForType(file,
[’read’,’write’,’close’]) automatically implies that you supportprotocolForType(file,
[’read’,’close’]) andprotocolForType(file, [’write’,’close’]) as well. (Note: in-
stances of thebaseTypeand its subclasses will also be considered to provide the returned protocol, whether or
not they explicitly declare support.)

If you supply a true value for theimplicit flag, the returned protocol will also adapt objects that have the spec-
ified methods or attributes. In other words,protocolForType(file, [’read’,’close’], True)
returns a protocol that will consider any object withread andclose methods to provide that protocol, as well
as objects that explicitly supportprotocolForType(file, [’read’,’close’]) .

In order to automatically declare the relationships between the protocols for different subsets, this function
internally generates all possible subsets of a requestedmethodslist. So, for example, requesting a protocol with
8 method names may cause as many as 127 protocol objects to be created. Of course, these are generated only
once in the lifetime of the program, but you should be aware of this if you are using large method subsets. Using
as few as 32 method names would create 2 billion protocols!

Note also that the suppliedbaseTypeis used only as a basis for semantic distinctions between sets of similar
method names, and to declare that thebaseTypeand its subclasses support the returned protocol. No protocol-to-
protocol relationships are automatically defined between protocols requested for different base types, regardless
of any subclass/superclass relationship between the base types.

Defining a protocol for a sequence

sequenceOf (protocol)
New in version 0.9.1. Return a protocol object that represents a sequence of objects adapted toprotocol.
Thus,protocols.sequenceOf(IFoo) is a protocol that represents aprotocols.IBasicSequence
of objects supporting theIFoo protocol. It is guaranteed that you will receive the same protocol object if you
call this routine more than once with the same protocol, even across pickling and unpickling of the returned
protocol object.

When this function creates a new sequence protocol, it automatically declares an adapter function from
protocols.IBasicSequence to the new protocol. The adapter function returns the equivalent of
[adapt(x,protocol) for x in sequence] , unless one of the adaptations fails, in which case it
returnsNone, causing the adaptation to fail.

The built-in list and tuple types are declared as implementations ofprotocols.IBasicSequence ,
so protocols returned bysequenceOf() can be used immediately to convert lists or tuples into lists of objects
supportingprotocol. If you need to adapt other kinds of sequences using yoursequenceProtocol() , you
will need to declare that those sequences implementprotocols.IBasicSequence unless they subclass
tuple , list , or some other type that implementsprotocols.IBasicSequence .

Defining a protocol as a local variation of another protocol

classVariation (baseProtocol[, context=None])
New in version 0.9.1. AVariation is a Protocol that ”inherits” adapter declarations from an existing
protocol. When you create aVariation , it declares that it is implied by itsbaseProtocol, and so any adpater
suitable for adapting to the base protocol is therefore suitable for theVariation . This allows you to then
declare adapters to the variation protocol, without affecting those declared for the base protocol. In this way,
you can have a protocol object that represents the use of the base protocol in a particular context. You can
optionally specify that context via thecontextargument, which will then serve as thecontext attribute of the
protocol. For more background on how this works and what it might be used for, see section 1.1.10.

22 Chapter 1. Reference

1.1.9 Package Contents and Contained Modules

The following functions, classes, and interfaces are available from the top-levelprotocols package.

adapt (component, protocol[, default])
Return an implementation ofprotocol (a protocol object) forcomponent(any object). The implementation
returned may becomponent, or an adapter that implements the protocol on its behalf. If no implementation is
available, returndefault. If no defaultis provided, raiseprotocols.AdaptationFailure .

A detailed description of this function’s operations and purpose may be found in section 1.1.3.

exceptionAdaptationFailure
New in version 0.9.3. A subclass ofTypeError andNotImplementedError , this exception type is
raised byadapt() when no implementation can be found, and nodefaultwas supplied.

classAdapter (ob, proto)
New in version 0.9.1. This base class provides a convenientinit method for adapter classes. To use it,
just subclassprotocols.Adapter and add methods to implement the desired interface(s). (And of course,
declare what interfaces the adapter provides, for what types, and so on.) Your subclass’ methods can use the
following attribute, which will have been set by the init method:

subject
The subject attribute of anAdapter instance is theob supplied to its constructor. That is, it is the
object being adapted.

advise (**kw)
Declare protocol relationships for the containing class or module. All parameters must be supplied as keyword
arguments. This function must be called directly from a class or module body, or aSyntaxError results at
runtime. Different arguments are accepted, according to whether the function is called within a class or module.

When invoked in the top-level code of a module, this function only accepts themoduleProvides keyword
argument. When invoked in the body of a class definition, this function accepts any keyword argumentsexcept
moduleProvides . The complete list of keyword arguments can be found in section 1.1.6.

Note: When used in a class body, this function works by temporarily replacing themetaclass of the
class. If your class sets an explicit metaclass , it must do sobeforeadvise() is called, or the protocol
declarations will not occur!

adviseObject (ob [, provides=[]] [, doesNotProvide=[]])
Declare thatob provides (or does not provide) the specified protocols. This is shorthand for calling
declareAdapterForObject() with NO ADAPTERNEEDEDand DOES NOT SUPPORTas adapters
from the object to each of the specified protocols. Note, therefore, thatob may need to support
IOpenProvider , and the listed protocols must be adaptable toIOpenProtocol . See section 1.1.6, “Pro-
tocol Declarations for Individual Objects”, for more information on usingadviseObject .

classAttribute (doc[,name=None, value=None])
This class is used to document attributes required by an interface. An example usage:

from protocols import Interface, Attribute

class IFoo(Interface):

Bar = Attribute("""All IFoos must have a Bar attribute""")

If you are using the “Abstract Base Class” or ABC style of interface documentation, you may wish to also use
thenameandvalueattributes. If supplied, theAttribute object will act as a data descriptor, supplyingvalue
as a default value, and storing any newly set value in the object’s instance dictionary. This is useful if you will
be subclassing the abstract base and creating instances of it, but still want to have documentation appear in the
interface. When the interface is displayed with tools likepydoc or help() , the attribute documentation will
be shown.

1.1. protocols — Protocol Definition, Declaration, and Adaptation 23

declareAdapter (factory, provides[, forTypes=[]] [, forProtocols=[]] [, forObjects=[]])
Declare thatfactory is anIAdapterFactory whose return value provides the protocols listed inprovidesas
an adapter for the classes/types listed inforTypes, for objects providing the protocols listed inforProtocols, and
for the specific objects listed inforObjects.

This function is shorthand for calling the primitive declaration functions (declareAdapterForType ,
declareAdapterForProtocol , anddeclareAdapterForObject) for each of the protocols listed
in providesand each of the items listed in the respective keyword arguments.

declareImplementation (typ [, instancesProvide=[]] [, instancesDoNotProvide=[]])
Declare that instances of class or typetyp do or do not provide implementations of the specified protocols.in-
stancesProvideandinstancesDoNotProvidemust be sequences of protocol objects that provide (or are adaptable
to) theIOpenProtocol interface, such asprotocols.Interface subclasses, orInterface objects
from Zope or Twisted.

This function is shorthand for callingdeclareAdapterForType() with NO ADAPTERNEEDEDand
DOES NOT SUPPORTas adapters from the type to each of the specified protocols. Note, therefore, that the
listed protocols must be adaptable toIOpenProtocol .

DOES NOT SUPPORT(component, protocol)
This function simply returnsNone. It is a placeholder used whenever an object, type, or protocol does not
implement or imply another protocol. Whenever adaptation is not possible, but theprotocols API function
you are calling requires an adapter, you should supply this function as the adapter. Some protocol implemen-
tations, such as the one for Zope interfaces, are unable to handle adapters other thanNO ADAPTERNEEDED
andDOES NOT SUPPORT.

classInterface
Subclass this to create a ”pure” interface. See section 1.1.4 for more details.

classAbstractBase
New in version 0.9.3. Subclass this to create an ”abstract base class” or ”ABC” interface. See section 1.1.4 for
more details.

NO ADAPTERNEEDED(component, protocol)
This function simply returnscomponent. It is a placeholder used whenever an object, type, or protocol directly
implements or implies another protocol. Whenever an adapter is not required, but theprotocols API function
you are calling requires an adapter, you should supply this function as the adapter. Some protocol implementa-
tions may be unable to handle adapters other thanNO ADAPTERNEEDEDandDOES NOT SUPPORT.

protocolForType (baseType,[methods=(), implicit=False])
New in version 0.9.1. Return a protocol object that represents the subset ofbaseTypedenoted bymethods. It is
guaranteed that you will receive the same protocol object if you call this routine more than once with eqivalent
paremeters. This behavior is preserved even across pickling and unpickling of the returned protocol object.

baseTypeshould be a type object, andmethodsshould be a sequence of attribute or method names. (The order
of the names is not important.) Theimplicit flag allows adapting objects that don’t explicitly declare support for
the protocol.

If you supply a true value for theimplicit flag, the returned protocol will also adapt objects that have the spec-
ified methods or attributes. In other words,protocolForType(file, [’read’,’close’], True)
returns a protocol that will consider any object withread andclose methods to provide that protocol, as well
as objects that explicitly supportprotocolForType(file, [’read’,’close’]) .

A more detailed description of this function’s operations and purpose may be found in section 1.1.8.

(Note: this function may generate up to2**len(methods) protocol objects, so beware of using large method
lists.)

protocolForURI (uri)
New in version 0.9.1. Return a protocol object that represents the supplied URI or UUID string. It is guaranteed
that you will receive the same protocol object if you call this routine more than once with equal strings. This
behavior is preserved even across pickling and unpickling of the returned protocol object.

24 Chapter 1. Reference

The purpose of this function is to permit modules to refer to protocols defined in another module, that may or
may not be present at runtime. A more detailed description of this function’s operations and purpose may be
found in section 1.1.8.

sequenceOf (protocol)
New in version 0.9.1. Return a protocol object that represents a sequence of objects adapted toprotocol.
Thus,protocols.sequenceOf(IFoo) is a protocol that represents aprotocols.IBasicSequence
of objects supporting theIFoo protocol. It is guaranteed that you will receive the same protocol object if you
call this routine more than once with the same protocol, even across pickling and unpickling of the returned
protocol object.

When this function creates a new sequence protocol, it automatically declares an adapter function from
protocols.IBasicSequence to the new protocol. The adapter function returns the equivalent of
[adapt(x,protocol) for x in sequence] , unless one of the adaptations fails, in which case it
returnsNone, causing the adaptation to fail.

The built-in list and tuple types are declared as implementations ofprotocols.IBasicSequence ,
so protocols returned bysequenceOf() can be used immediately to convert lists or tuples into lists of objects
supportingprotocol. If you need to adapt other kinds of sequences using yoursequenceProtocol() , you
will need to declare that those sequences implementprotocols.IBasicSequence unless they subclass
tuple , list , or some other type that implementsprotocols.IBasicSequence .

classStickyAdapter (ob, proto)
New in version 0.9.1. This base class is the same as theAdapter class, but with an extra feature. When
a StickyAdapter instance is created, it declares itself as an adapter for itssubject , so that subsequent
adapt() calls will return the same adapter instance. (Technically, it declares an adapter function that returns
itself.)

This approach is useful when an adapter wants to hold information on behalf of its subject, that must not be lost
when the subject is adapted in more than one place.

Note that for aStickyAdapter subclass to be useful, the types it adaptsmustsupportIOpenProvider .
See section 1.1.6, “Protocol Declarations for Individual Objects” for more information on this. Also, you should
never declare that aStickyAdapter subclass adapts an individual object (as opposed to a type or protocol),
since such a declaration would create a conflict when the adapter instance tries to register itself as an adapter for
that same object and protocol.

StickyAdapter adds one attribute to those defined byAdapter :

attachForProtocols
A tuple of protocols to be declared by the constructor. Define this in your subclass’ body to indicate what
protocols it should attach itself for.

1.1. protocols — Protocol Definition, Declaration, and Adaptation 25

Classes and Functions typically used for Customization/Extension

These classes and functions are also available from the top-levelprotocols package. In contrast to the items already
covered, these classes and functions are generally needed only when extending the protocols framework, as opposed
to merely using it.

classProtocol
Protocol is a base class that implements theIOpenProtocol interface, supplying internal adapter reg-
istries for adapting from other protocols or types/classes. Note that you do not necessarily need to use this
class (or any otherIOpenProtocol implementation) in your programs. Any object that implements the sim-
pler IProtocol or IAdaptingProtocol interfaces may be used as protocols for theadapt() function.
Compliance with theIOpenProtocol interface is only required to use theprotocols declaration API.
(That is, functions whose names begin withdeclare or advise .)

To create protocols dynamically, you can create individualProtocol instances, and then use them with
the declaration API. You can also subclassProtocol to create your own protocol types. If you override

init , however, be sure to callProtocol. init () in your subclass’ init method.

classVariation (baseProtocol[, context=None])
New in version 0.9.1. AVariation is a Protocol that ”inherits” adapter declarations from an existing
protocol. When you create aVariation , it declares that it is implied by itsbaseProtocol, and so any adpater
suitable for adapting to the base protocol is therefore suitable for theVariation . This allows you to then
declare adapters to the variation protocol, without affecting those declared for the base protocol. In this way,
you can have a protocol object that represents the use of the base protocol in a particular context. You can
optionally specify that context via thecontextargument, which will then serve as thecontext attribute of the
protocol. For more background on how this works and what it might be used for, see section 1.1.10.

classAbstractBaseMeta (name, bases, dictionary)
New in version 0.9.3.AbstractBaseMeta , a subclass ofProtocol andtype , is a metaclass used to cre-
ate new ”ABC-style” protocol objects, using class statements. You can use this metaclass directly, but it’s gen-
erally simpler to just subclassAbstractBase instead. Normally, you will only useAbstractBaseMeta
if you need to combine it with another metaclass.

classInterfaceClass (name, bases, dictionary)
InterfaceClass is a subclass ofAbstractBaseMeta that implements the convenience adapation API
(see section 1.1.3) for its instances. This metaclass is used to create new ”pure-style” interfaces (i.e., proto-
col objects) using class statements. Normally, you will only useInterfaceClass directly if you need to
combine it with another metaclass, as it is usually easier just to subclassInterface .

classIBasicSequence (New in version .)
0.9.1 This interface represents the ability to iterate over a container-like object, such as a list or tuple. An
IBasicSequence object must have an iter () method. By default, only the built-inlist and
tuple types are declared as having instances providing this interface. If you want to be able to adapt to
sequenceOf() protocols from other sequence types, you should declare that their instances support this
protocol.

classProviderMixin
If you have a class with a conform method for its instances, but you also want the instances to support
IOpenprovider (so thatadviseObject can be used on them), you may want to include this class as one
of your class’ bases. The default adapters forIOpenprovider can only adapt objects that do not already have
a conform method of their own.

So, to supportIOpenprovider with a custom conform method, subclassProviderMixin , and
have your conform method invoke the base conform method as a default, usingsupermeta() .
(E.g. return supermeta(MyClass,self). conform (protocol) .) See below for more on
thesupermeta() function.

metamethod (func)
Wrap func in a manner analagous toclassmethod or staticmethod , but as a metaclass-level method

26 Chapter 1. Reference

that may be redefined by metaclass instances for their instances. For example, if a metaclass wants to de-
fine a conform method for its instances (i.e. classes), and those instances (classes) want to de-
fine a conform method for their instances, the metaclass should wrap itsconform method
with metamethod . Otherwise, the metaclass’ conform method will be hidden by the class-level

conform defined for the class’ instances.

supermeta (typ, ob)
Emulates the Python built-insuper() function, but with support for metamethods. If you ordinarily would use
super() , but are calling ametamethod , you should usesupermeta() instead. This is because Python
2.2 does not support using super with properties (which is effectively what metamethods are).

Note that if you are subclassingProviderMixin or Protocol , you will need to usesupermeta() to call
almost any inherited methods, since most of the methods provided are wrapped withmetamethod() .

declareAdapterForType (protocol, adapter, typ[, depth=1])
Declare thatadapteradapts instances of class or typetyp to protocol, by adaptingprotocolto IOpenProtocol
and calling itsregisterImplementation method. If typ is adaptable toIOpenImplementor , its
declareClassImplements method is called as well.

declareAdapterForObject (protocol, adapter, ob[, depth=1])
Declare thatadapteradapts the objectob to protocol, by adaptingprotocolto IOpenProtocol and calling its
registerObject method. Typically,obmust supportIOpenProvider . See section 1.1.6 for details.

declareAdapterForProtocol (protocol, adapter, proto[, depth=1])
Declare that adapter adapts objects that provide protocolproto to protocol, by calling
adapt(proto,IOpenProtocol).addImpliedProtocol(protocol, adapter, depth) .

1.1. protocols — Protocol Definition, Declaration, and Adaptation 27

protocols.interfaces — Package Interfaces

Note: All of the interfaces listed here can also be imported directly from the top-levelprotocols package. However,
you will probably only need them if you are extending the framework, as opposed to merely using it.

classIOpenProtocol
This interface documents the behavior required of protocol objects in order to be used with theprotocols
declaration API (the functions whose names begin withdeclare or advise .) The declaration API functions
will attempt toadapt() supplied protocols to this interface.

The methods anIOpenProtocol implementation must supply are:

addImpliedProtocol (proto, adapter, depth)
Declare that this protocol can be adapted to protocolproto via the IAdapterFactory supplied
in adapter, at the specified implication leveldepth. The protocol object should ensure that the im-
plied protocol is able to adapt objects implementing its protocol (typically by recursively invoking
declareAdapterForType() with increased depth and appropriately composed adapters), and no-
tify any registered implication listeners via theirnewProtocolImplied() methods. If the protocol
already impliedproto, this method should have no effect and send no notifications unless the newadapter
anddepthrepresent a “shorter path” as described in section 1.1.7.

registerImplementation (klass, adapter, depth)
Declare that instances of type or classklasscan be adapted to this protocol via theIAdapterFactory
supplied inadapter, at the specified implication leveldepth. Unlessadapteris DOES NOT SUPPORT, the
protocol object must ensure that any protocols it implies are also able to perform the adaptation (typically
by recursively invokingdeclareAdapterForType() with increased depth and appropriately com-
posed adapters for its implied protocols). If the protocol already knew a way to adapt instances ofklass,
this method should be a no-op unless the newadapteranddepthrepresent a “shorter path” as described in
section 1.1.7.

registerObject (ob, adapter, depth)
Ensure that the specific objectob will be adapted to this protocol via theIAdapterFactory sup-
plied in adapter, at the specified implication leveldepth. The protocol object must also ensure that
the object can be adapted to any protocols it implies. This method may be implemented by adapting
ob to IOpenProvider , calling thedeclareProvides() method, and then recursively invoking
declareAdapterForObject with increased depth and appropriately composed adapters for the pro-
tocols’ implied protocols.

addImplicationListener (listener)
Ensure thatlistener (an IImplicationListener) will be notified whenever an implied protocol is
added to this protocol, or an implication path from this protocol is shortened. The protocol should at most
retain a weak reference tolistener. Note that if a protocol can guarantee that no notices will ever need to
be sent, it is free to implement this method as a no-op. For example, Zope interfaces cannot imply any
protocols besides their base interfaces, which are not allowed to change. Therefore, no change notifications
would ever need to be sent, so theIOpenProtocol adapter for Zope interfaces implements this method
as a no-op.

Note: IOpenProtocol is a subclass ofIAdaptingProtocol , which means that implementations must
therefore meet its requirements as well, such as having anadapt () method.

classIOpenProvider
This interface documents the behavior required of an object to be usable withadviseObject() .
Note that some protocol objects, such as theIOpenProtocol adapter for Zope interfaces, can handle
adviseObject() operations without adapting the target object toIOpenProvider . This should be con-
sidered an exception, rather than the rule. However, theprotocols package declares default adapters so
that virtually any Python object that doesn’t already have aconform () method can be adapted to
IOpenProvider automatically.

declareProvides (protocol, adapter, depth)
Declare that this object can provideprotocol if adapted by theIAdapterFactory supplied inadapter,

28 Chapter 1. Reference

at implication leveldepth. Return a true value if the new adapter was used, or a false value if the ob-
ject already knew a “shorter path” for adapting toprotocol (as described in section 1.1.7). Typically,
an implementation of this method will also adaptprotocol to IOpenProtocol , and then register with
addImplicationListener() to receive notice of any protocols that might be implied byprotocol
in future.

classIImplicationListener
This interface documents the behavior required of an object supplied to the
IOpenProtocol.addImplicationListener() method. Such objects must be weak-referenceable,
usable as a dictionary key, and supply the following method:

newProtocolImplied (srcProto, destProto, adapter, depth)
Receive notice that an adaptation was declared fromsrcPrototodestProto, using theIAdapterFactory
adapter, at implication leveldepth.

When used as part of anIOpenProvider implementation, this method is typically used to recursively
invoke declareAdapterForObject() with increased depth and appropriately composed adapters
from protocols already supported by the object.

classIOpenImplementor
If an class or type supplied todeclareAdapterForType supports this interface, it will be noti-
fied of the declaration and any future declarations that affect the class, due to current or future pro-
tocol implication relationships. Supporting this interface is not necessary; it is provided as a hook
for advanced users. Note that to declare a class or type as anIOpenImplementor , you must call
adviseObject(theClass, provides=[IOpenImplementor]) after the class definition or place
advise(classProvides=[IOpenImplementor]) in the body of the class, since this interface must
be provided by the class itself, not by its instances. (Of course, if you implement this interface via a metaclass,
you can declare that the metaclass’ instances provide the interface.)

Notification to classes supportingIOpenImplementor occurs via the following method:

declareClassImplements (protocol, adapter, depth)
Receive notice that instances of the class supportprotocol via the theIAdapterFactory supplied in
adapter, at implication leveldepth.

classIAdapterFactory
An interface documenting the requirements for an object to be used as an adapter factory: i.e., that it be a
callable accepting an object to be adapted.) This interface is not used by theprotocols package except as
documentation.

classIProtocol
An interface documenting the basic requirements for an object to be used as a protocol foradapt() : i.e., that it
be usable as a dictionary key. This interface is not used by theprotocols package except as documentation.

classIAdaptingProtocol
An interface documenting the requirements for a protocol object to be able to adapt objects when used with
adapt() : i.e., that it have a adapt method that accepts the object to be adapted and returns either
an object providing the protocol orNone. This interface is not used by theprotocols package except as
documentation. It is a subclass ofIProtocol , so any implementation of this interface must support the
requirements defined byIProtocol as well.

1.1. protocols — Protocol Definition, Declaration, and Adaptation 29

protocols.adapters — “Adapter arithmetic” support

Theprotocols.adapters module provides support for doing “adapter arithmetic” such as determining which of
two adapter paths is shorter, composing a new adapter from two existing adapters, and updating an adapter registry
with a new adapter path. See section 1.1.7 for a more general discussion of adapter arithmetic.

minimumAdapter (a1, a2[, d1=0, d2=0])
Find the “shortest” adapter path,a1 at depthd1, or a2 at depthd2. Assuminga1 anda2 are adapter factories
that accept similar input and return similar output, this function returns the one which is the “shortest path”
between its input and its output. That is, the one with the smallest implication depth (d1 or d2), or, if the
depths are equal, then the adapter factory that is composed of the fewest chained factories (as composed by
composeAdapters()) is returned. If neither factory is composed of multiple factories, or they are composed
of the same number of intermediate adapter factories, then the following preference order is used:

1.If one of the adapters isNO ADAPTERNEEDED, it is returned

2.If one of the adapters isDOES NOT SUPPORT, theotheradapter is returned.

3.If both adapters are the exact same object (i.e.a1 is a2), either one is returned

If none of the above conditions apply, then the adapter precedence is considered ambiguous, and aTypeError
is raised.

This function is used byupdateWithSimplestAdapter to determine whether a new adapter declara-
tion should result in a registry update. Note that the determination of adapter composition length uses the

adapterCount attribute, if present. (It is assumed to be1 if not present. SeecomposeAdapters()
for more details.)

composeAdapters (baseAdapter, baseProtocol, extendingAdapter)
Return a newIAdapterFactory composed of the input adapter factoriesbaseAdapterand extendin-
gAdapter. If either input adapter isDOES NOT SUPPORT, DOES NOT SUPPORTis returned. If either input
adapter isNO ADAPTERNEEDED, the other input adapter is returned. Otherwise, a new adapter factory is cre-
ated that will returnextendingAdapter(baseAdapter(object)) when called withobject . (Note: the actual
implementation verifies thatbaseAdapterdidn’t returnNone before it callsextendingAdapter).

If this function creates a new adapter factory, the factory will have anadapterCount attribute set to
the sum of the adapterCount attributes of the input adapter factories. If an input factory does not have
an adapterCount attribute, it is assumed to equal1. This is done so that theminimumAdapter()
can compare the length of composed adapter chains.

updateWithSimplestAdapter (mapping, key, adapter, depth)
Treat mappingas an adapter registry, replacing the entry designated bykey with an (adapter, depth) tu-
ple, if and only if the new entry would be a “shorter path” than the existing entry, if any. (I.e., if
minimumAdapter(old, adapter, oldDepth, depth) returnsadapter, andadapteris not the existing
registered adapter. The function returns a true value if it updates the contents ofmapping.

This function is used to manage type-to-protocol, protocol-to-protocol, and object-to-protocol adapter registries,
keyed by type or protocol. Themappingargument must be a mapping providingsetitem () andget()
methods. Values stored in the mapping will be(adapter, depth) tuples.

30 Chapter 1. Reference

protocols.zope support — Support for Zope Interfaces

Importing this module enables experimental support for using Zope X3Interface objects with theprotocols
package, by registering an adapter from Zope X3’sInterfaceClass to IOpenProtocol . The adapter supports
the following subset of the declaration API:

• The only adapters supported via Zope APIs areNO ADAPTERNEEDEDandDOES NOT SUPPORT. By using
PyProtocols APIs, you may declare and use other adapters for Zope interfaces, but Zope itself will not use them,
since the Zope interface API does not directly support adaptation.

• Zope’s interface APIs do not conform toprotocols package “shortest path wins” semantics. Instead, new
declarations override older ones.

• Interface-to-interface adaptation may not work if a class only declares what it implements using Zope’s interface
API. That is, if a class declares that it implementsISomeZopeInterface , and you define an adaptation from
ISomeZopeInterface to ISomeOtherInterface , PyProtocols may not recognize that the class can be
adapted toISomeOtherInterface .

• Changing the bases of a class that has Zope interfaces declared for it (either as “class provides” or
“instances provide”), may have unexpected results, because Zope uses inheritance of a single descriptor to
control declarations. In general, it will only work if the class whosebases are changed, has no declarations of
its own.

• You cannot declare an implication relationship from a ZopeInterface , because Zope only supports impli-
cation via inheritance, which is fixed at interface definition time. Therefore, you cannot create a “subset” of a
ZopeInterface , and subscribing anIImplicationListener to an adapted ZopeInterface silently
does nothing.

• You can, however, declare that aprotocols.Interface extends a ZopeInterface . Declaring that
a class’ instances or that an object provides the extended interface, will automatically declare that the class’
instances or the object provides the ZopeInterface as well. For example:

import protocols
from zope.somepackage.interfaces import IBase

class IExtended(protocols.Interface):
advise(

protocolExtends = [IBase]
)

class AnImplementation:
advise(

instancesProvide = [IExtended]
)

The above code should result in Zope recognizing that instances ofAnImplementation provide the Zope
IBase interface.

• You cannot extend both a Zope interface and a Twisted interface in the sameprotocols.Interface . Al-
though this may not give you any errors, Twisted and Zope both expect to use animplements attribute
to store information about what interface a class or object provides. But each has a different interpretation of the
contents, and does not expect to find “foreign” interfaces contained within. So, until this issue between Zope
and Twisted is resolved, it is not very useful to create interfaces that extend both Zope and Twisted interfaces.

• Zope does not currently appear to support classes inheriting direct declarations (e.g.classProvides). This
appears to be a by-design limitation.

1.1. protocols — Protocol Definition, Declaration, and Adaptation 31

The current implementation of support for Zope X3 interfaces is currently based on Zope X3 beta 1; it may not work
with older releases. Zope X3 requires Python 2.3.4 or better, so even though PyProtocols works with 2.2.2 and up in
general, you will need 2.3.4 to use PyProtocols with Zope X3.

32 Chapter 1. Reference

protocols.twisted support — Support for Twisted Interfaces

Importing this module enables experimental support for using Twisted 1.1.0Interface objects with the
protocols package, by registering an adapter from Twisted’sMetaInterface to IOpenProtocol . The
adapter supports the following subset of the declaration API:

• Only protocol-to-protocol adapters defined via theprotocols declaration API will be available to implication
listeners. If protocol-to-protocol adapters are registered via Twisted’sregisterAdapter() , implication
listeners arenotnotified.

• You cannot usefully create a “subset” of a Twisted interface, or an adaptation from a Twisted interface to another
interface type, as Twisted insists that interfaces must subclass its interface base class. Also, Twisted does not
support transitive adaptation, nor can it notify the destination interface(s) of any new incoming adapter paths.

• If you register an adapter factory that can returnNone with a Twisted interface, note that Twisted does not check
for a None return value fromgetAdapter() . This means that code in Twisted might receiveNone when it
expected either an implementation or an error.

• Only Twisted’s global adapter registry is supported for declarations andadapt() .

• Twisted doesn’t support classes providing interfaces (as opposed to their instances providing them). You may
therefore obtain unexpected results if you declare that a class provides a Twisted interface or an interface that
extends a Twisted interface.

• Changing the bases of a class that has Twisted interfaces declared for it may have unexpected results,
because Twisted uses inheritance of a single descriptor to control declarations. In general, it will only work if
the class whosebases are changed, has no declarations of its own.

• Any adapter factory may be used for protocol-to-protocol adapter declarations. But, for any other kind of
declaration,NO ADAPTERNEEDEDand DOES NOT SUPPORTare the only adapter factories that can be
used with Twisted.

• Twisted interfaces do not conform toprotocols package “shortest path wins” semantics. For protocol-to-
protocol adapter declarations, only one adapter declaration between a given pair of interfaces is allowed. Any
subsequent declarations with the same source and destination will result in aValueError . For all other kinds
of adapter declarations, new declarations override older ones.

• You cannot extend both a Zope interface and a Twisted interface in the sameprotocols.Interface . Al-
though this may not give you any errors, Twisted and Zope both expect to use animplements attribute
to store information about what interface a class or object provides. But each has a different interpretation of the
contents, and does not expect to find “foreign” interfaces contained within. So, until this issue between Zope
and Twisted is resolved, it is not very useful to create interfaces that extend both Zope and Twisted interfaces.

1.1. protocols — Protocol Definition, Declaration, and Adaptation 33

protocols.advice — Metaclasses and other “Magic”

This module provides a variety of utility functions and classes used by theprotocols package. None of them are
really specific to theprotocols package, and so may be useful to other libraries or applications.

addClassAdvisor (callback[, depth=2])
Set upcallbackto be called with the containing class, once it is created. This function is designed to be called by
an “advising” function (such asprotocols.advise()) executed in the body of a class suite. The “advising”
function supplies a callback that it wishes to have executed when the containing class is created. The callback
will be given one argument: the newly created containing class. The return value of the callback will be used in
placeof the class, so the callback should return the input if it does not wish to replace the class.

The optionaldepthargument determines the number of frames between this function and the targeted class suite.
depthdefaults to 2, since this skips this function’s frame and one calling function frame. If you use this function
from a function called directly in the class suite, the default will be correct, otherwise you will need to determine
the correct depth yourself.

This function works by installing a special class factory function in place of themetaclass of the
containing class. Therefore, only callbacksafter the last metaclass assignment in the containing class
will be executed. Be sure that classes using “advising” functions declare anymetaclass first, to ensure
all callbacks are run.

isClassAdvisor (ob)
Returns truth ifob is a class advisor function. This is used to determine if ametaclass value is a
“magic” metaclass installed byaddClassAdvisor() . If so, thenob will have apreviousMetaclass
attribute pointing to the previous metaclass, if any, and acallback attribute containing the callback that was
given toaddClassAdvisor() .

getFrameInfo (frame)
Return a(kind, module, locals, globals) tuple for the supplied frame object. The returnedkind is a string:
either “exec”, “module”, “class”, “function call”, or “unknown”.moduleis the module object the frame is/was
executed in, orNone if the frame’s globals could not be correlated with a module insys.modules . locals
andglobalsare the frame’s local and global dictionaries, respectively. Note that they can be the same dictionary,
and that modifications to locals may not have any effect on the execution of the frame.

This function is used by functions likeaddClassAdvisor() andadvise() to verify where they’re being
called from, and to work their respective magics.

getMRO(ob [, extendedClassic=False])
Return an iterable over the “method resolution order” ofob. If ob is a “new-style” class or type, this returns its

mro attribute. Ifob is a “classic” class, this returnsclassicMRO(ob, extendedClassic) . If ob is not a
class or type of any kind, a one-element sequence containing justob is returned.

classicMRO (ob [, extendedClassic=False])
Return an iterator over the “method resolution order” of classic classob, following the “classic” method reso-
lution algorithm of recursively traversing bases from left to right. (Note that this may return the same
class more than once, for some inheritance graphs.) If varextendedClassic is a true value,InstanceType and
object are added at the end of the iteration. This is used byProtocol objects to allow generic adapters for
InstanceType andobject to be used with “classic” class instances.

determineMetaclass (bases[, explicit mc=None])
Determine the metaclass that would be used by Python, given a non-empty sequence of base classes, and an
optional explicitly supplied metaclass . ReturnsClassType if all bases are “classic” and there is no
explicit mc. RaisesTypeError if the bases’ metaclasses are incompatible, just like Python would.

minimalBases (classes)
Return the shortest ordered subset of the input sequenceclassesthat still contains the “most specific” classes.
That is, the result sequence contains only classes that are not subclasses of each other. This function is used by
determineMetaclass() to narrow down its list of candidate metaclasses, but is also useful for dynamically
generating metaclasses.

34 Chapter 1. Reference

mkRef (ob [, callable])
If ob is weak-referenceable, returnsweakref.ref(ob, callable) . Otherwise, returns aStrongRef(ob) ,
emulating the interface ofweakref.ref() . This is used by code that wants to use weak references, but may
be given objects that are not weak-referenceable. Note thatcallable, if supplied, will not be called ifob is not
weak-referenceable.

classStrongRef (ob)
An object that emulates the interface ofweakref.ref() . When called, an instance ofStrongRef will
return theob it was created for. Also, it will hash the same asoband compare equal to it. Thus, it can be used as
a dictionary key, as long as the underlying object can. Of course, since it is not really a weak reference, it does
not contribute to the garbage collection of the underlying object, and may in fact hinder it, since it holds a live
reference to the object.

1.1. protocols — Protocol Definition, Declaration, and Adaptation 35

1.1.10 Big Example 2 — Extending the Framework for Context

Now it’s time for our second “big” example. This time, we’re going to add an extension to theprotocols framework
to support “contextual adaptation”. The tools we’ve covered so far are probably adequate to support 80-90% of
situations requiring adaptation. But, they are essentially global in nature: only one adapter path is allowed between
any two points. What if we need to define a different adaptation in a specific context?

For example, let’s take the documentation framework we began designing in section 1.1.1. Suppose we’d like,
for the duration of a single documentation run, to replace the factory that adapts fromFunctionType to
IDocumentable ? For example, we might like to do this so that functions used by our “finite state machine”
objects as “transitions” are documented differently than regular functions.

Using only the tools described so far, we can’t do this ifIDocumentable is a single object. The framework that
registered theFunctionAsDocumentable adapter effectively ensured that we cannot replace that adapter with
another, since it is already the shortest adapter path. What can we do?

In section 1.1.7, we discussed how we could create “subset” protocols and “inherit” adapter declarations from existing
protocols. In this way, we could create a new subset protocol ofIDocumentable , and then register our context-
specific adapters with that subset. These subset protocols are just as fast as the original protocols in looking up
adapters, so there’s no performance penalty.

But who creates the subset protocol? The client or the framework? And how do we get the framework to use our
subset instead of its built-inIDocumentable protocol?

To answer these questions, we will create an extension to theprotocols framework that makes it easy for frame-
works to manage “contextual” or “local” protocols. Then, framework creators will have a straightforward way to
support context-specific adapter overrides.

As before, we’ll start by envisioning our ideal situation. Let’s assume that our documentation tools are object-based.
That is, we instantiate a “documentation set” or “documentation run” object in order to generate documentation. How
do we want to register adapters? Well, we could have the framework add a bunch of methods to do this, but it seems
more straightforward to simply supply the interfaces as attributes of the “documentation set” or “documentation run”
object, e.g.:

from theDocTool import DocSet
from myAdapters import specialFunctionAdapter
from types import FunctionType
import protocols

myDocs = DocSet()

protocols.registerAdapter(
specialFunctionAdapter,
provides = [myDocs.IDocumentable],
forTypes = [FunctionType]

)

myDocs.run()

So, instead of importing the interface, we access it as an attribute of some relevant “context” object, and declare
adapters for it. Anything we don’t declare a “local” adapter for, will use the adapters declared for the underlying
“global” protocol.

Naturally, the framework author could implement this by writing code in theDocSet class’ init method, to
create the new “local” protocol and register it as a subset of the “global”IDocumentable interface. But that would
be time-consuming and error prone, and therefore discourage the use of such “local” protocols.

Again, let’s consider what our ideal situation would be. The author of theDocSet class should be able to do something
like:

36 Chapter 1. Reference

class DocSet:

from doctool.interfaces import IDocumentable, ISignature

IDocumentable = subsetPerInstance(IDocumentable)
ISignature = subsetPerInstance(ISignature)

... etc.

Our hypotheticalsubsetPerInstance class would be a descriptor that did all the work needed to provide a
“localized” version of each interface for each instance ofDocSet . Code in theDocSet class would always refer to
self.IDocumentable or self.ISignature , rather than using the “global” versions of the interfaces. Thus,
we can now register adapters that are unique to a specificDocSet , but still use any globally declared adapters as
defaults.

Okay, so that’s our hypothetical ideal. How do we implement it? I personally like to try writing the ideal thing, to
find out what other pieces are needed. So let’s start with writing thesubsetPerInstance descriptor, since that’s
really the only piece we know we need so far.

from protocols import Protocol, declareAdapterForProtocol, NO_ADAPTER_NEEDED

class subsetPerInstance(object):

def __init__(self,protocol,name=None):

self.protocol = protocol
self.name = name or getattr(protocol,’__name__’,None)

if not self.name:
raise TypeError("Descriptor needs a name for", protocol)

def __get__(self,ob,typ=None):

if ob is None:
return self

name = self.name
if getattr(type(ob),name) is not self or name in ob.__dict__:

raise TypeError(
"Descriptor is under more than one name or the wrong name",
self, name, type(ob)

)

local = Protocol()
declareAdapterForProtocol(local,NO_ADAPTER_NEEDED,self.protocol)

save it in the instance’s dictionary so we won’t be called again
ob.__dict__[name] = local
return local

def __repr__(self):
return "subsetPerInstance(%r)" % self.protocol

Whew. Most of the complexity above comes from the need for the descriptor to know its “name” in the containing
class. As written, it will guess its name to be the name of the wrapped interface, if available. It can also detect some

1.1. protocols — Protocol Definition, Declaration, and Adaptation 37

potential aliasing/renaming issues that could occur. The actual work of the descriptor occurs in just two lines, buried
deep in the middle of the get method.

As written, it’s a handy enough tool. We could leave things where they are right now and still get the job done. But
that would hardly be an example of extending the framework, since we didn’t even subclass anything!

So let’s add another feature. As it sits, our descriptor should work with both old and new-style classes, automatically
generating one subset protocol for each instance of its containing class. But, the subset protocol doesn’tknow it’s a
subset protocol, or of what context. If we were to printDocSet().IDocumentable , we’d just get something like
<protocols.interfaces.Protocol instance at 0x00ABA220> .

Here’s what we’d like it to do instead. We’d like it to say something likeLocalProtocol(<class
’IDocumentable’>, <DocSet instance at 0x00AD9FB0>) . That is, we want the local protocol to:

• “know” it’s a local protocol

• know what protocol it’s a local subset of

• know what “context” object it’s a local protocol for

What does this do for us? Aside from debugging, it gives us a chance to find related interfaces, or access methods or
data available from the context.

So, let’s create aLocalProtocol class:

class LocalProtocol(Protocol):

def __init__(self, baseProtocol, context):

self.baseProtocol = baseProtocol
self.context = context

Note: Protocol is a ‘‘classic’’ class, so we don’t use super()
Protocol.__init__(self)

declareAdapterForProtocol(self,NO_ADAPTER_NEEDED,baseProtocol)

def __repr__(self):
return "LocalProtocol(%r,%r)" % (self.baseProtocol, self.context)

And now, we can replace these two lines in our earlierget method:

local = Protocol()
declareAdapterForProtocol(local,NO_ADAPTER_NEEDED,self.protocol)

with this one:

local = LocalProtocol(self.protocol, ob)

Thus, the new local protocol will know its context is the instance it was retrieved from.

Of course, to make this new extension really robust, we would need to add some more documentation. For example,
it might be good to add anILocalProtocol interface that documents what local protocols do. Context-sensitive
adapters would then be able to verify whether they are working with a local protocol or a global one. Framework
developers would also want to document what local interfaces are provided by their frameworks’ objects, and authors
of context-sensitive adapters need to document what interface they expect their local protocols’context attribute to
supply! Also, see below for a web site with some interesting papers on patterns for using localized adaptation of this
kind.

38 Chapter 1. Reference

Note: In practice, the idea of having local protocols turned out to be useful enough that as of version 0.9.1, our
LocalProtocol example class was added to the protocols package asprotocols.Variation . So, if you
want to make use of the idea, you don’t need to type in the source or write your own any more.

See Also:

Object Teams
(http://www.objectteams.org/)

If you find the idea of context-specific interfaces and adapters interesting, you’ll find “Object Teams” intriguing
as well. In effect, the ideas we’ve presented here map onto a subset of the “Object Teams” concept. Our local
interfaces correspond to their “abstract roles”, our local adapters’ instances map to their “role instances”, and
our contexts are their “team instances”. Adapting an object corresponds to their “lifting”, and so on. The main
concept that’s not directly supported by our implementation here is “callin binding”. (Callin binding is a way
of (possibly temporarily) injecting hooks into an adapted object so that the adapter can be informed when the
adapted object’s methods are called directly by other code.)

1.1. protocols — Protocol Definition, Declaration, and Adaptation 39

1.1.11 Additional Examples and Usage Notes

If you have any ideas or examples you’d like to share for inclusion in this section, please contact the author. In the
meantime, here are a few additional examples of things you can do withadapt() and theprotocols package.

Double Dispatch and the “Visitor” Pattern

Double dispatch and the “Visitor” pattern are mechanisms for selecting a method to be executed, based on the type of
two objects at the same time. To implement either pattern, both object types must have code specifically to support
the pattern. Object adaptation makes this easier by requiring at most one of the objects to directly support the pattern;
the other side can provide support via adaptation. This is useful both for writing new code clearly and for adapting
existing code to use the pattern.

First, let’s look at double dispatching. Suppose we are creating a business application GUI that supports drag-and-
drop. We have various kinds of objects that can be dragged and dropped onto other objects: users, files, folders, a trash
can, and a printer. When we drop a user on a file, we want to grant the user access to the file, and when we drop a file
on the user, we want to email them the file. If we drop a file on a folder, it should be filed in the folder, but if we drop
the folder on the file, that’s an error. The classic “double dispatch” approach would look something like:

class Printer:
def drop(self,thing):

thing.droppedOnPrinter(self)

class Trashcan:
def drop(self,thing):

thing.droppedInTrash(self)

class User:
def drop(self,thing):

thing.droppedOnUser(self)

def droppedOnPrinter(self,printer):
printer.printUser(self)

def droppedInTrash(self,trash):
self.delete()

class File:
def drop(self,thing):

thing.droppedOnFile(self)

def droppedOnPrinter(self,printer):
printer.printFile(self)

def droppedOnUser(self,user):
user.sendMail(self)

def droppedInTrash(self,trash):
self.delete()

We’ve left out any of the methods that actuallydoanything, of course, and all of the methods for things that the objects
don’t do. For example, theTrashcan should have methods fordroppedInTrash() , droppedOnPrinter() ,
etc., that display an error or beep or whatever. (Of course, in Python you can just trap theAttributeError from
the missing method to do this; but we didn’t show that here either.)

Every time another kind of object is added to this system, newdroppedOnX methods spring up everywhere like

40 Chapter 1. Reference

weeds. Now let’s look at the adaptation approach:

class Printer:
def drop(self,thing):

IPrintable(thing).printOn(self)

class Trashcan:
def drop(self,thing):

IDeletable(thing).delete(self)

class User:
protocols.advise(instancesProvide=[IDeletable,IPrintable])
def drop(self,thing):

IMailable(thing).mailTo(self)

class File:
protocols.advise(instancesProvide=[IDeletable,IMailable,IPrintable])
def drop(self,thing):

IInsertable(thing).insertInto(self)

class Undroppable(protocols.Adapter):
protocols.advise(

instancesProvide=[IPrintable,IDeletable,IMailable,IInsertable],
asAdapterForTypes=[object]

)

def printOn(self,printer):
print "Can’t print", self.subject

def mailTo(self,user):
print "Can’t mail", self.subject

... etc.

Notice how our defaultUndroppable adapter class implements theIPrintable , IDeletable , IMailable ,
andIInsertable protocols on behalf of arbitrary objects, by giving user feedback that the operation isn’t possi-
ble. (This technique of using a default adapter factory that provides an empty or error-raising implementation of an
interface, is an example of thenull object pattern .)

Notice that the adaptation approach is much more scalable, because new methods are not required for every new
droppable item. Third parties can declare adaptations between two other developers’ objects, making drag and drop
between them possible.

Now let’s look at the “Visitor” pattern. The “Visitor” pattern is a specialized form of double dispatch, used to apply an
algorithm to a structured collection of objects. For example, the Pythondocutils tookit implements the visitor pattern
to create various kinds of output from a document node tree (much like an XML DOM). Each node has awalk()
method that accepts a “visitor” argument. The visitor must provide a set ofvisit X methods, where X is the name
of a type of node. The idea of the approach is that one can write new visitor types that perform different functions.
One visitor writes out HTML, another writes out LaTeX or maybe plain ASCII text. The nodes don’t care what the
visitor does, they just tell it what kind of object is being visited.

Like double dispatch, this pattern is definitely an improvement over writing large if-then-else blocks to introspect
types. But it does have a few drawbacks. First, all the types must have unique names. Second, the visitor must have
methods for all possible node types (or the caller must handle the absence of the methods). Third, there is no way
for the methods to mimic the inheritance or interface structure of the source types. So, if there are node types like
Shape andSquare , you must writevisit Shape andvisit Square methods, even if you would like to treat
all subtypes ofShape the same.

1.1. protocols — Protocol Definition, Declaration, and Adaptation 41

The object adaptation approach to this, is to define visitor(s) as adapters from the objects being traversed, to an interface
that supplies the desired behavior. For example, one might defineIHTMLWriter andILaTeXWriter interfaces,
with writeHTML() andwriteLaTeX() methods. Then, by defining adapters from the appropriate node base
types to these interfaces, the desired behavior is achieved. Just useIHTMLWriter(document).writeHTML() ,
and off you go.

This approach is far less fragile, since new node types do not require new methods in the visitors, and if the new node
type specializes an existing type, the default adaptation might be reasonable. Also, the approach is non-invasive, so it
can be applied to existing frameworks that don’t support the visitor pattern (such asxml.dom.minidom). Further,
the adapters can exercise fine-grained control over any traversal that takes place, since it is the adapter rather than the
adaptee that controls the visiting order.

Last, but not least, notice that by adapting from interfaces rather than types, one can apply this pattern to multiple
implementations of the interface. For example, Python has many XML DOM implementations; to the extent that
two implementations provide the same interface, the adapters you write could be used with any of them, even if each
pacakge has different names for their node types.

Are there any downsides to using adaptation over double-dispatch or the Visitor pattern? The total size of your program
may be larger, because you’ll be writing lots of adapter classes. But, your program will also be more modular, and
you’ll be able to group the classes in ways that make more sense for the reader. Using adaptation also may be faster
or slower than not using it, depending on various implementation factors.

It’s rare that the difference is significant, however. In most uses of these patterns, runtime is dominated by the useful
work being done, not by the dispatching. The exception is when a structure to be visited contains many thousands of
elements that need virtually no work done to them. (For example, if an XML visitor wrote text nodes out unchanged,
and the input was mostly text nodes.) Under such conditions, the time taken by the dispatch mechanism (whether
name-based or adapter-based) would be more visible.

The author has found, however, that in that situation, one can gain more speed by registering null adapter factories or
DOES NOT SUPPORTfor the element types in question. This shortens the adapter lookup time enough to make the
adaptation overhead competitive with name-based approaches. But this only needs to be done when “trivial” elements
dominate the structures to be processed,andperformance is critical.

See Also:

Variations on the Visitor Pattern
(http://citeseer.nj.nec.com/nordberg96variations.html)

A critique of the Visitor pattern that raises some of the same issues we raise here, and with similar solutions.
Reading its C++ examples, however, will increase your appreciation for the simplicity and modularity that
adapt() offers!

The Null Object Pattern
(http://citeseer.nj.nec.com/woolf96null.html)

The original write-up of this handy approach to simplifying framework code.

42 Chapter 1. Reference

Replacing introspection with Adaptation, Revisited

“Potentially-idempotent adapter functions are a honking great idea – let’s do more of those”, to para-
phrase the timbot.

— Alex Martelli, oncomp.lang.python

All programs that use GOTO’s can be rewritten without GOTOs, using higher-level constructs for control flow like
function calls,while loops, and so on. In the same way, type checks – and even interface checks – are not essential
in the presence of higher-level control constructs such as adaptation. Just as getting rid of GOTO “spaghetti code”
helped make programs easier to read and understand, so too can replacing introspection with adaptation.

In section 1.1.3, we listed three common uses for using type or interface checks (e.g. usingisinstance()):

• To manually adapt a supplied component to a needed interface

• To select one of several possible behaviors, based on the kind of component supplied

• To select another component, or take some action, using information about the interfaces supported by the
supplied component

By now, you’ve seen enough uses of theprotocols module that it should be apparent that all three of the above use
cases can – in principle – be handled by adaptation. However, in the course of moving PEAK from using introspection
to adaptation, I ran into some use cases that at first seemed very difficult to “adapt”. However, once I understood
how to handle them, I realized that there was a straightforward approach to refactoring any introspection use cases I
encountered. Although this approach seems to have more than one step, in reality they are all variations on the same
theme: expose the hidden interface, then adapt to it. Here’s how you do it:

1. First, is this just a case of adapting different types to a common interface? If yes, then just declare the adapters
and useadapt() normally. If the interface isn’t explicit or documented, make it so.

2. Is this a case of choosing a behavior, based on the type? If yes, thendefine the missing interfacethat you want
to adapt to. In other words, code that switches on type to select a behavior, really wants the behavior to be in
theotherobject. So, there is in effect an “undocumented implicit interface” that the code is adapting the other
object to. Make the interface explicit and documented, move the code into adapters (or into the other classes!),
and useadapt() .

3. Is this a case of choosing a behavior or a component based on using interfaces as metadata? If so, this is really
a special case of #2. An example of this use case is where Zope X3 provides UI components based on what
interfaces an object supports. In this case, the “undocumented implicit interface” is the ability to select an
appropriate UI component! Or perhaps it’s an ability to provide a set of “tags” or “keys” that can be used to look
up UI components or other things. You’ll have to decide what the real “essence” is. But either way, you make
the needed behavior explicit (as an interface), and then useadapt() .

Notice that in each case, the code is demonstrably improved. First, there is more documentation of theintended
behavior (as opposed to merely the actual behavior, which might be broken). Second, there is greater extensibility,
because it isn’t necessary to change the code to add more type cases. Third, the code is more readable, because
the code’s purpose is highlighted, not all the possible variations of its implementation. In the words of Tim Peters,
“Explicit is better than implicit. Simple is better than complex. Sparse is better than dense. Readability counts.”

Now that we’ve covered how to replace all forms of introspection with adaptation, I’ll readily admit that I still write
code that does introspection when I’m in “first draft” mode! Brevity is the soul of prototyping, and I don’t mind
banging out a few quickif isinstance(): checks in order to figure out what it is I want the code to do. But
then, I refactor, because I want my code to be... adaptable! Chances are good, that you will too.

1.1. protocols — Protocol Definition, Declaration, and Adaptation 43

44

MODULE INDEX

P
protocols , 1
protocols.adapters , 30
protocols.advice , 34
protocols.interfaces , 28
protocols.twisted support , 33
protocols.zope support , 31

45

46

INDEX

A
AbstractBase (class in protocols), 24
AbstractBaseMeta (class in protocols), 26
adapt() (in module protocols), 6, 23
AdaptationFailure (exception in protocols), 23
Adapter (class in protocols), 23
addClassAdvisor() (in module proto-

cols.advice), 34
addImplicationListener() (IOpenProtocol

method), 28
addImpliedProtocol() (IOpenProtocol

method), 28
advise() (in module protocols), 16, 23
adviseObject() (in module protocols), 15, 23
attachForProtocols (StickyAdapter attribute),

25
Attribute (class in protocols), 23

C
classicMRO() (in module protocols.advice), 34
composeAdapters() (in module proto-

cols.adapters), 30

D
declareAdapter() (in module protocols), 15, 24
declareAdapterForObject() (in module pro-

tocols), 27
declareAdapterForProtocol() (in module

protocols), 27
declareAdapterForType() (in module proto-

cols), 27
declareClassImplements() (IOpenImple-

mentor method), 29
declareImplementation() (in module proto-

cols), 15, 24
declareProvides() (IOpenProvider method), 28
determineMetaclass() (in module proto-

cols.advice), 34
DOES NOT SUPPORT() (in module protocols), 24

G
getFrameInfo() (in module protocols.advice), 34
getMRO() (in module protocols.advice), 34

I
IAdapterFactory (class in protocols.interfaces),

29
IAdaptingProtocol (class in proto-

cols.interfaces), 29
IBasicSequence (class in protocols), 26
IImplicationListener (class in proto-

cols.interfaces), 29
Interface (class in protocols), 24
InterfaceClass (class in protocols), 26
IOpenImplementor (class in protocols.interfaces),

29
IOpenProtocol (class in protocols.interfaces), 28
IOpenProvider (class in protocols.interfaces), 28
IProtocol (class in protocols.interfaces), 29
isClassAdvisor() (in module protocols.advice),

34

M
metamethod() (in module protocols), 26
minimalBases() (in module protocols.advice), 34
minimumAdapter() (in module proto-

cols.adapters), 30
mkRef() (in module protocols.advice), 35

N
newProtocolImplied() (IImplicationListener

method), 29
NO ADAPTERNEEDED() (in module protocols), 24

P
Protocol (class in protocols), 26
protocolForType() (in module protocols), 21,

24
protocolForURI() (in module protocols), 21, 24
protocols (module),1
protocols.adapters (module),30

47

protocols.advice (module),34
protocols.interfaces (module),28
protocols.twisted support (module),33
protocols.zope support (module),31
ProviderMixin (class in protocols), 26
Python Enhancement Proposals

PEP 246, 1, 2, 4, 6, 10

R
registerImplementation() (IOpenProtocol

method), 28
registerObject() (IOpenProtocol method), 28

S
sequenceOf() (in module protocols), 22, 25
StickyAdapter (class in protocols), 25
StrongRef (class in protocols.advice), 35
subject (Adapter attribute), 23
supermeta() (in module protocols), 27

U
updateWithSimplestAdapter() (in module

protocols.adapters), 30

V
Variation (class in protocols), 22, 26

48 Index

	1 Reference
	1.1 protocols --- Protocol Definition, Declaration, and Adaptation
	1.1.1 Big Example 1 --- A Python Documentation Framework
	1.1.2 Protocols and Interfaces
	1.1.3 adapt() and the Adaptation Protocol
	Creating and Using Adapters, Components, and Protocols
	Replacing Introspection with Adaptation
	Differences Between protocols.adapt() and PEP 246
	Convenience Adaptation API (NEW in 0.9.3)

	1.1.4 Defining and Subclassing Interfaces
	1.1.5 Interfaces Used by the Declaration API
	1.1.6 Declaring Implementations and Adapters
	Convenience Declarations in Class, Interface and Module Bodies
	Protocol Declarations for Individual Objects

	1.1.7 Protocol Implication and Adapter Precedence
	1.1.8 Dynamic Protocols (NEW in 0.9.1)
	Defining a protocol based on a URI or UUID
	Defining a protocol as a subset of an existing type
	Defining a protocol for a sequence
	Defining a protocol as a local variation of another protocol

	1.1.9 Package Contents and Contained Modules
	Classes and Functions typically used for Customization/Extension
	protocols.interfaces --- Package Interfaces
	protocols.adapters --- ``Adapter arithmetic'' support
	protocols.zope_support --- Support for Zope Interfaces
	protocols.twisted_support --- Support for Twisted Interfaces
	protocols.advice --- Metaclasses and other ``Magic''

	1.1.10 Big Example 2 --- Extending the Framework for Context
	1.1.11 Additional Examples and Usage Notes
	Double Dispatch and the ``Visitor'' Pattern
	Replacing introspection with Adaptation, Revisited

	Module Index
	Index

