The PEAK Developers' Center   BytecodeAssembler UserPreferences
 
HelpContents Search Diffs Info Edit Subscribe XML Print View
The following 1324 words could not be found in the dictionary of 50 words (including 50 LocalSpellingWords) and are highlighted below:
4j   Actually   Added   Adjustment   Also   Although   Among   And   Any   Append   Arbitrary   Arguments   As   Assembler   Assertion   Assign   Assuming   Attribute   Attributes   Auto   Blocks   Both   Break   But   By   Bytecode   Call   Calling   Calls   Can   Cell   Center   Change   Changes   Cloning   Closures   Code   Comp   Compare   Comparisons   Comprehensions   Computed   Conditional   Conditions   Const   Constant   Constants   Containers   Contents   Continue   Converting   Custom   Dead   Decorator   Defaults   Demo   Detection   Dev   Disassembler   Docs   Doctests   Don   Each   Ensure   Error   Except   Exception   Exhaustive   Expr   False   Finally   First   Fix   Fixed   Folding   For   Free   Full   Function   Functions   Generally   Generating   Generation   Getattr   Global   Goto   Handling   Hashing   Here   High   However   If   In   Initial   Instead   Instructions   Internals   It   Its   Jump   Jumps   Just   Key   L1   L2   L3   L4   L5   Label   Labels   Level   Line   List   Local   Logical   Loops   Mailing   Methods   More   Most   Name   Names   Nested   New   None   Normally   Not   Note   Notice   Now   Number   Objects   Obtaining   On   Opcodes   Or   Other   Pass   Please   Programmer   Python   Pythons   Questions   Relative   Removed   Return   Returning   See   Sequence   Setting   Signature   Similarly   Simple   Size   So   Some   Special   Stack   Statement   Statements   Stmt   Suite   Support   Switch   Symbolic   Table   Targets   Test   That   The   There   These   They   This   Three   Thus   To   Tools   Traceback   Tracking   True   Try   Trying   Tuples   Type   Typical   Undefined   Under   Unknown   Unless   Unpack   Unpacking   Values   Variables   Various   Way   What   When   Which   Yield   You   Your   ability   able   about   above   absolute   abuse   accepted   accepts   access   accessible   accessing   accident   accidentally   accomodate   accomplishes   according   accordingly   accurate   across   active   actual   actually   add   added   addition   additional   address   addresses   adds   adjacent   adjust   adjustment   adjusts   advance   advantage   affect   after   against   ahead   algorithms   alias   all   allow   allowing   allows   already   also   although   always   amount   an   analogue   and   another   any   anywhere   appear   append   appended   applicable   approach   appropriate   arbitrary   are   aren   arg   argc   argcount   args   argument   arguments   around   array   as   assembler   assign   assignment   ast   at   attempt   attempts   attention   attribute   attributes   automatic   automatically   available   avoid   avoiding   avoids   away   back   backpatching   backward   backwards   bar   based   baz   be   because   become   becomes   been   before   begin   beginning   begins   behavior   being   below   benefits   besides   better   between   bit   bits   block   block1   block2   blocks   body   boolean   both   branch   branches   break   breaks   broken   bug   building   built   but   by   byte   bytecode   bytecodes   bytes   c1   caching   calculation   call   callable   callables   callbacks   called   calling   calls   can   cannot   care   case   cases   cause   causes   causing   cell   cells   cellvars   chain   change   changed   changes   check   checked   checking   checks   child   chooses   clarity   class   classmethod   classmethods   clause   clean   cleanup   clear   clone   cloning   closure   closures   cmp   co   code   com   combinations   come   comma   common   commonly   compact   compare   compared   compares   comparing   comparison   comparisons   compatibility   compatible   compile   compiled   complete   complex   comprehension   comprehensions   compute   computed   computes   computing   cond   condition   conditional   conditionally   confuse   consider   consistency   consistent   const   constant   constants   construct   construction   constructor   constructors   consts   containing   contents   continue   convenience   convert   converts   copied   copy   copying   correct   correspond   corresponding   could   counts   course   crash   create   created   creates   creating   creation   creative   cross   current   currently   curry   cursize   custom   customize   data   dead   debugging   decide   decision   decorator   decreases   def   default   defaults   defer   define   defined   defines   definition   definitions   delayed   delete   demo   demonstrate   depending   described   designed   desired   destination   destruction   details   detection   dict   dictionary   difference   differences   different   differing   directed   directly   dis   disable   disabled   disassembler   disassembly   discards   discussion   display   distance   distinction   distinguish   diverse   do   docs   doctest   doctesting   doctests   document   documentation   does   doing   don   done   doubly   down   dropped   drops   dump   dup   during   dynamic   dynamically   each   eager   eagerly   earlier   ease   easier   easy   eby   ed   effects   either   eliminated   elimination   else   em   emits   emitting   empty   emulate   emulates   emulating   emulation   emulations   encodes   end   enforce   ensure   ensures   entire   equal   equality   equivalent   error   esier   estimated   etc   eval   evaluate   evaluation   even   every   exactly   example   examples   exceed   except   exception   exceptions   exec   executes   execution   exist   existing   exited   expected   explicit   explicitly   exports   expr   expression   expressions   extend   extensibility   extensible   extra   extras   f1   f2   f3   f4   fact   failures   fall   falling   falls   false   fast   faster   feature   features   few   field   fields   file   filename   finally   find   first   firstlineno   fix   fixed   fixes   flag   flags   flno   float   focus   fold   folded   folding   folds   followed   following   follows   for   format   forward   found   four   frame   framework   free   freevars   from   full   fully   func   function   functional   functions   further   future   fwd   general   generatable   generate   generated   generates   generating   generation   generator   get   getargs   getargspec   getattr   gets   give   given   gives   global   globally   globals   glue   go   goes   going   goto   great   greater   group   handler   handlers   handles   handling   handy   happen   hard   has   hash   hashable   hashing   have   having   height   helpful   here   high   higher   history   how   however   id   identical   identity   if   immediately   implement   implementation   implements   import   impossible   improve   in   include   included   includes   incorporate   incorrect   increase   increased   index   indicate   indicating   information   ing   inherited   inherits   initial   initializes   innermost   input   inserted   inside   inspect   inspecting   instance   instances   instead   instruction   instructions   int   integer   integers   intermediate   internal   interpreter   into   invoke   invoked   invoking   is   isn   issue   issues   it   items   iterable   iteration   its   itself   jump   jumped   jumping   jumps   just   keep   kept   key   keyword   keywords   kind   know   kw   kwargc   kwargs   l1   l2   label   labelled   labels   lambda   last   later   least   len   length   less   let   level   levels   library   life   like   likely   limitations   line   linear   linearly   lineno   lines   link   list   listinfo   listings   lists   literal   ll   lnotab   load   local   locally   locals   location   locations   logical   long   looked   looks   loop   looped   loops   low   lower   macros   made   mailman   maintained   maintaining   major   make   makecells   makefree   makes   making   manages   manual   manually   many   map   maps   mark   marks   massive   match   matched   matches   matter   maximum   me   means   mechanical   merely   mess   messing   method   methods   might   mind   mini   mismatch   module   moment   more   most   mostly   moved   much   multiple   must   mutable   mutate   name   named   names   naming   near   necessary   need   needed   needing   needs   nested   never   new   newly   next   nil   no   node   nodes   nodetype   non   nonexistent   normal   normally   not   note   nothing   notice   now   number   numbers   numeric   ob   object   objects   obtain   occasion   occurs   of   off   offers   offset   offsets   okay   old   older   omit   on   once   one   only   op   opcode   opcodes   operates   operation   operations   operator   operators   opposed   optimized   optimizer   optional   or   order   oriented   origin   original   other   otherwise   our   outer   output   outputting   over   overall   own   package   packages   pair   pairs   parameter   parameters   parent   partial   pass   passed   passing   patch   patched   patching   pattern   peak   perform   performance   performed   place   plan   please   plus   point   pop   popped   pops   position   positional   possible   preceding   predicted   prediction   present   prevents   previous   previously   print   probably   process   produce   produces   producing   progress   prologue   promotion   propagate   propagation   proper   properly   prove   provide   provided   provides   purposes   push   put   puts   quantities   quick   raise   raised   range   rather   re   reachable   reached   read   ready   real   really   reason   receive   recent   recognize   reconstruct   recovery   recreate   recursively   refer   reference   referenced   references   referring   regarding   regardless   regular   reinvokes   rejecting   relative   release   releases   relevant   remove   removed   renamed   replaced   replacing   repr   representing   represents   requested   require   required   requires   reset   resolve   resolved   resolving   respectively   result   resulting   retroactively   return   returned   returning   returns   reused   rid   right   robust   room   roughly   run   running   runtime   same   sample   sarna   scope   scopes   second   section   sections   see   semantics   separated   sequence   sequences   series   set   sets   setting   setup   shortcut   should   show   showcases   shows   signature   simple   simpler   simplest   simplified   simply   simulate   since   single   size   skip   skipped   slno   smart   so   software   some   something   sometimes   sophisticated   source   space   span   speaking   spec   special   specific   specifications   specified   specs   spelling   spurious   stack   stacksize   standard   starargs   start   state   statement   statements   static   store   stores   string   strings   struct   structure   structures   sub   subexpression   substitute   substitution   subtrees   success   such   sufficiently   suffixes   suite   supplied   support   supported   supports   suppression   surrounding   switch   symbol   symbolic   sys   system   table   take   takes   target   targeted   targeting   targets   tasks   telecommunity   template   temporary   test   tested   testing   testname   tests   tf   than   that   the   their   them   then   there   therefore   these   they   thing   things   this   those   though   three   through   thus   time   times   to   toc   together   top   total   tracebacks   track   tracking   traditional   trailing   transform   transformation   transforming   treat   treated   tree   trees   trick   tricky   tries   triples   trivial   true   try   trying   tuple   tuples   two   type   types   typical   unbound   unchanged   unclosed   unconditional   unconditionally   undefined   under   underflow   unhashable   unicode   unknown   unless   unnecessary   unoptimized   unpack   unpacking   unpacks   unreachable   until   up   update   updated   updating   usable   use   used   useful   uses   using   usually   util   valid   value   values   var   variable   variables   variants   variations   variety   varnames   vars   vary   ve   verbose   verify   verifying   version   versions   very   virtualized   virtually   vs   want   was   way   ways   we   well   were   what   whatever   when   whenever   where   whether   which   while   whose   why   wide   widely   will   with   within   without   words   work   working   works   would   wrap   wrapped   wrapper   wrappers   wrapping   wraps   write   writing   written   yet   yield   yielding   you   your   zero   zeroth  

Clear message


Generating Python Bytecode with peak.util.assembler

peak.util.assembler is a simple bytecode assembler module that handles most low-level bytecode generation details like jump offsets, stack size tracking, line number table generation, constant and variable name index tracking, etc. That way, you can focus your attention on the desired semantics of your bytecode instead of on these mechanical issues.

In addition to a low-level opcode-oriented API for directly generating specific Python bytecodes, this module also offers an extensible mini-AST framework for generating code from high-level specifications. This framework does most of the work needed to transform tree-like structures into linear bytecode instructions, and includes the ability to do compile-time constant folding.

Please see the BytecodeAssembler reference manual for more details.

Changes since version 0.5.2:

Changes since version 0.5.1:

Changes since version 0.5:

Changes since version 0.3:

Changes since version 0.2:

Changes since version 0.1:

Changes since version 0.0.1:

There are a few features that aren't tested yet, and not all opcodes may be fully supported. Also note the following limitations:

If you find any other issues, please let me know.

Please also keep in mind that this is a work in progress, and the API may change if I come up with a better way to do something.

Questions and discussion regarding this software should be directed to the PEAK Mailing List.

Table of Contents

Programmer API

Code Objects

To generate bytecode, you create a Code instance and perform operations on it. For example, here we create a Code object representing lines 15 and 16 of some input source:

>>> from peak.util.assembler import Code
>>> c = Code()
>>> c.set_lineno(15)   # set the current line number (optional)
>>> c.LOAD_CONST(42)

>>> c.set_lineno(16)   # set it as many times as you like
>>> c.RETURN_VALUE()

You'll notice that most Code methods are named for a CPython bytecode operation, but there also some other methods like .set_lineno() to let you set the current line number. There's also a .code() method that returns a Python code object, representing the current state of the Code you've generated:

>>> from dis import dis
>>> dis(c.code())
  15          0 LOAD_CONST               1 (42)
  16          3 RETURN_VALUE

As you can see, Code instances automatically generate a line number table that maps each set_lineno() to the corresponding position in the bytecode.

And of course, the resulting code objects can be run with eval() or exec, or used with new.function to create a function:

>>> eval(c.code())
42

>>> exec c.code()   # exec discards the return value, so no output here

>>> import new
>>> f = new.function(c.code(), globals())
>>> f()
42

Finally, code objects are also iterable, yielding (offset, opcode, arg) tuples, where arg is None for opcodes with no arguments, and an integer otherwise:

>>> import peak.util.assembler as op
>>> list(c) == [
...     (0, op.LOAD_CONST, 1),
...     (3, op.RETURN_VALUE, None)
... ]
True

This can be useful for testing or otherwise inspecting code you've generated.

Symbolic Disassembler

Python's built-in disassembler can be verbose and hard to read when inspecting complex generated code -- usually you don't care about bytecode offsets or line numbers as much as you care about labels, for example.

So, BytecodeAssembler provides its own, simplified disassembler, which we'll be using for more complex listings in this manual:

>>> from peak.util.assembler import dump  

Some sample output, that also showcases some of BytecodeAssembler's High-Level Code Generation features:

>>> c = Code()
>>> from peak.util.assembler import Compare, Local
>>> c.return_(Compare(Local('a'), [('<', Local('b')), ('<', Local('c'))]))
>>> dump(c.code())
                LOAD_FAST                0 (a)
                LOAD_FAST                1 (b)
                DUP_TOP
                ROT_THREE
                COMPARE_OP               0 (<)
                JUMP_IF_FALSE           L1
                POP_TOP
                LOAD_FAST                2 (c)
                COMPARE_OP               0 (<)
                JUMP_FORWARD            L2
        L1:     ROT_TWO
                POP_TOP
        L2:     RETURN_VALUE

As you can see, the line numbers and bytecode offsets have been dropped, making it esier to see where the jumps go. (This also makes doctests more robust against Python version changes, as dump() has some extra code to make conditional jumps appear consistent across the major changes that were made to conditional jump instructions between Python 2.6 and 2.7.)

Opcodes and Arguments

Code objects have methods for all of CPython's symbolic opcodes. Generally speaking, each method accepts either zero or one argument, depending on whether the opcode accepts an argument.

Python bytecode always encodes opcode arguments as 16 or 32-bit integers, but sometimes these numbers are actually offsets into a sequence of names or constants. Code objects take care of maintaining these sequences for you, allowing you to just pass in a name or value directly, instead of needing to keep track of what numbers map to what names or values.

The name or value you pass in to such methods will be looked up in the appropriate table (see Code Attributes below for a list), and if not found, it will be added:

>>> c = Code()
>>> c.co_consts, c.co_varnames, c.co_names
([None], [], [])

>>> c.LOAD_CONST(42)
>>> c.LOAD_FAST('x')
>>> c.LOAD_GLOBAL('y')
>>> c.LOAD_NAME('z')

>>> c.co_consts, c.co_varnames, c.co_names
([None, 42], ['x'], ['y', 'z'])

The one exception to this automatic addition feature is that opcodes referring to "free" or "cell" variables will not automatically add new names, because the names need to be defined first:

>>> c.LOAD_DEREF('q')
Traceback (most recent call last):
  ...
NameError: ('Undefined free or cell var', 'q')

In general, opcode methods take the same arguments as their Python bytecode equivalent. But there are a few special cases.

Call Arguments

First, the CALL_FUNCTION(), CALL_FUNCTION_VAR(), CALL_FUNCTION_KW(), and CALL_FUNCTION_VAR_KW() methods all take two arguments, both of which are optional. (The _VAR and _KW suffixes in the method names indicate whether or not a *args or **kwargs or both are also present on the stack, in addition to the explicit positional and keyword arguments.)

The first argument of each of these methods, is the number of positional arguments on the stack, and the second is the number of keyword/value pairs on the stack (to be used as keyword arguments). Both default to zero if not supplied:

>>> c = Code()
>>> c.LOAD_CONST(type)
>>> c.LOAD_CONST(27)
>>> c.CALL_FUNCTION(1)      # 1 positional, no keywords
>>> c.RETURN_VALUE()

>>> eval(c.code())          # computes type(27)
<type 'int'>

>>> c = Code()
>>> c.LOAD_CONST(dict)
>>> c.LOAD_CONST('x')
>>> c.LOAD_CONST(42)
>>> c.CALL_FUNCTION(0,1)    # no positional, 1 keyword
>>> c.RETURN_VALUE()

>>> eval(c.code())          # computes dict(x=42)
{'x': 42}

Jump Targets

Opcodes that perform jumps or refer to addresses can be invoked in one of two ways. First, if you are jumping backwards (e.g. with JUMP_ABSOLUTE or CONTINUE_LOOP), you can obtain the target bytecode offset using the .here() method, and then later pass that offset into the appropriate method:

>>> c = Code()
>>> c.LOAD_CONST(42)
>>> where = c.here()         # get a location near the start of the code
>>> c.DUP_TOP()
>>> c.POP_TOP()
>>> c.JUMP_ABSOLUTE(where)   # now jump back to it

>>> dump(c.code())
                LOAD_CONST               1 (42)
        L1:     DUP_TOP
                POP_TOP
                JUMP_ABSOLUTE            L1

But if you are jumping forward, you will need to call the jump or setup method without any arguments. The return value will be a "forward reference" object that can be called later to indicate that the desired jump target has been reached:

>>> c = Code()
>>> c.LOAD_CONST(99)
>>> forward = c.JUMP_IF_TRUE() # create a jump and a forward reference

>>> c.LOAD_CONST(42)            # this is what we want to skip over
>>> c.POP_TOP()

>>> forward()   # calling the reference changes the jump to point here
>>> c.LOAD_CONST(23)
>>> c.RETURN_VALUE()

>>> dump(c.code())
                LOAD_CONST               1 (99)
                JUMP_IF_TRUE             L1
                LOAD_CONST               2 (42)
                POP_TOP
        L1:     LOAD_CONST               3 (23)
                RETURN_VALUE

>>> eval(c.code())
23

Other Special Opcodes

The MAKE_CLOSURE method takes an argument for the number of default values on the stack, just like the "real" Python opcode. However, it also has an an additional required argument: the number of closure cells on the stack. The Python interpreter normally gets this number from a code object that's on the stack, but Code objects need this value in order to update the current stack size, for purposes of computing the required total stack size:

>>> def x(a,b):     # a simple closure example
...     def y():
...         return a+b
...     return y

>>> c = Code()
>>> c.co_cellvars = ('a','b')

>>> import sys
>>> c.LOAD_CLOSURE('a')
>>> c.LOAD_CLOSURE('b')
>>> if sys.version>='2.5':
...     c.BUILD_TUPLE(2) # In Python 2.5+, free vars must be in a tuple
>>> c.LOAD_CONST(None)   # in real code, this'd be a Python code constant
>>> c.MAKE_CLOSURE(0,2)  # no defaults, 2 free vars in the new function

>>> c.stack_size         # This will be 1, no matter what Python version
1

The COMPARE_OP method takes an argument which can be a valid comparison integer constant, or a string containing a Python operator, e.g.:

>>> c = Code()
>>> c.LOAD_CONST(1)
>>> c.LOAD_CONST(2)
>>> c.COMPARE_OP('not in')
>>> dis(c.code())
  0           0 LOAD_CONST               1 (1)
              3 LOAD_CONST               2 (2)
              6 COMPARE_OP               7 (not in)

The full list of valid operator strings can be found in the standard library's opcode module. "<>" is also accepted as an alias for "!=":

>>> c.LOAD_CONST(3)
>>> c.COMPARE_OP('<>')
>>> dis(c.code())
  0           0 LOAD_CONST               1 (1)
              3 LOAD_CONST               2 (2)
              6 COMPARE_OP               7 (not in)
              9 LOAD_CONST               3 (3)
             12 COMPARE_OP               3 (!=)

High-Level Code Generation

Typical real-life code generation use cases call for transforming tree-like data structures into bytecode, rather than linearly outputting instructions. Code objects provide for this using a simple but high-level transformation API.

Code objects may be called, passing in one or more arguments. Each argument will have bytecode generated for it, according to its type:

Simple Constants

If an argument is an integer, long, float, complex, string, unicode, boolean, None, or Python code object, it is treated as though it was passed to the LOAD_CONST method directly:

>>> c = Code()
>>> c(1, 2L, 3.0, 4j+5, "6", u"7", False, None, c.code())
>>> dis(c.code())
  0           0 LOAD_CONST               1 (1)
              3 LOAD_CONST               2 (2L)
              6 LOAD_CONST               3 (3.0)
              9 LOAD_CONST               4 ((5+4j))
             12 LOAD_CONST               5 ('6')
             15 LOAD_CONST               6 (u'7')
             18 LOAD_CONST               7 (False)
             21 LOAD_CONST               0 (None)
             24 LOAD_CONST               8 (<code object <lambda> at ...>)

Note that although some values of different types may compare equal to each other, Code objects will not substitute a value of a different type than the one you requested:

>>> c = Code()
>>> c(1, True, 1.0, 1L)     # equal, but different types
>>> dis(c.code())
  0           0 LOAD_CONST               1 (1)
              3 LOAD_CONST               2 (True)
              6 LOAD_CONST               3 (1.0)
              9 LOAD_CONST               4 (1L)

Simple Containers

If an argument is a tuple, list, or dictionary, code is generated to reconstruct the given data, recursively:

>>> c = Code()
>>> c({1:(2,"3"), 4:[5,6]})
>>> dis(c.code())
  0           0 BUILD_MAP                0
              3 DUP_TOP
              4 LOAD_CONST               1 (1)
              7 LOAD_CONST               2 (2)
             10 LOAD_CONST               3 ('3')
             13 BUILD_TUPLE              2
             16 ROT_THREE
             17 STORE_SUBSCR
             18 DUP_TOP
             19 LOAD_CONST               4 (4)
             22 LOAD_CONST               5 (5)
             25 LOAD_CONST               6 (6)
             28 BUILD_LIST               2
             31 ROT_THREE
             32 STORE_SUBSCR

Arbitrary Constants

The Const wrapper allows you to treat any object as a literal constant, regardless of its type:

>>> from peak.util.assembler import Const

>>> c = Code()
>>> c( Const( (1,2,3) ) )
>>> dis(c.code())
  0           0 LOAD_CONST               1 ((1, 2, 3))

As you can see, the above creates code that references an actual tuple as a constant, rather than generating code to recreate the tuple using a series of LOAD_CONST operations followed by a BUILD_TUPLE.

If the value wrapped in a Const is not hashable, it is compared by identity rather than value. This prevents equal mutable values from being reused by accident, e.g. if you plan to mutate the "constant" values later:

>>> c = Code()
>>> c(Const([]), Const([]))     # equal, but not the same object!
>>> dis(c.code())
  0           0 LOAD_CONST               1 ([])
              3 LOAD_CONST               2 ([])

Thus, although Const objects hash and compare based on equality for hashable types:

>>> hash(Const(3)) == hash(3)
True
>>> Const(3)==Const(3)
True

They hash and compare based on object identity for non-hashable types:

>>> c = Const([])
>>> hash(c) == hash(id(c.value))
True
>>> c == Const(c.value)     # compares equal if same object
True
>>> c == Const([])          # but is not equal to a merely equal object
False

Suite and Pass

On occasion, it's helpful to be able to group a sequence of opcodes, expressions, or statements together, to be passed as an argument to other node types. The Suite node type accomplishes this:

>>> from peak.util.assembler import Suite, Pass

>>> c = Code()
>>> c.return_(Suite([Const(42), Code.DUP_TOP, Code.POP_TOP]))
>>> dis(c.code())
  0           0 LOAD_CONST               1 (42)
              3 DUP_TOP
              4 POP_TOP
              5 RETURN_VALUE    

And Pass is a shortcut for an empty Suite, that generates nothing:

>>> Suite([])
Pass

>>> c = Code()
>>> c(Pass)
>>> c.return_(None)
>>> dis(c.code())
  0           0 LOAD_CONST               0 (None)
              3 RETURN_VALUE    

Local and Global Names

The Local and Global wrappers take a name, and load either a local or global variable, respectively:

>>> from peak.util.assembler import Global, Local

>>> c = Code()
>>> c( Local('x'), Global('y') )
>>> dis(c.code())
  0           0 LOAD_FAST                0 (x)
              3 LOAD_GLOBAL              0 (y)

As with simple constants and Const wrappers, these objects can be used to construct more complex expressions, like {a:(b,c)}:

>>> c = Code()
>>> c( {Local('a'): (Local('b'), Local('c'))} )
>>> dis(c.code())
  0           0 BUILD_MAP                0
              3 DUP_TOP
              4 LOAD_FAST                0 (a)
              7 LOAD_FAST                1 (b)
             10 LOAD_FAST                2 (c)
             13 BUILD_TUPLE              2
             16 ROT_THREE
             17 STORE_SUBSCR

The LocalAssign node type takes a name, and stores a value in a local variable:

>>> from peak.util.assembler import LocalAssign
>>> c = Code()
>>> c(42, LocalAssign('x'))
>>> dis(c.code())
  0           0 LOAD_CONST               1 (42)
              3 STORE_FAST               0 (x)

If the code object is not using "fast locals" (i.e. CO_OPTIMIZED isn't set), local variables will be referenced using LOAD_NAME and STORE_NAME instead of LOAD_FAST and STORE_FAST, and if the referenced local name is a "cell" or "free" variable, LOAD_DEREF and STORE_DEREF are used instead:

>>> from peak.util.assembler import CO_OPTIMIZED
>>> c = Code()
>>> c.co_flags &= ~CO_OPTIMIZED
>>> c.co_cellvars = ('y',)
>>> c.co_freevars = ('z',)
>>> c( Local('x'), Local('y'), Local('z') )
>>> c( LocalAssign('x'), LocalAssign('y'), LocalAssign('z') )
>>> dis(c.code())
  0           0 LOAD_NAME                0 (x)
              3 LOAD_DEREF               0 (y)
              6 LOAD_DEREF               1 (z)
              9 STORE_NAME               0 (x)
             12 STORE_DEREF              0 (y)
             15 STORE_DEREF              1 (z)

Obtaining Attributes

The Getattr node type takes an expression and an attribute name. The attribute name can be a constant string, in which case a LOAD_ATTR opcode is used, and constant folding is done if possible:

>>> from peak.util.assembler import Getattr

>>> c = Code()
>>> c(Getattr(Local('x'), '__class__'))
>>> dis(c.code())
  0           0 LOAD_FAST                0 (x)
              3 LOAD_ATTR                0 (__class__)


>>> Getattr(Const(object), '__class__') # const expression, const result
Const(<type 'type'>)

Or the attribute name can be an expression, in which case a getattr() call is compiled instead:

>>> c = Code()
>>> c(Getattr(Local('x'), Local('y')))
>>> dis(c.code())
  0           0 LOAD_CONST               1 (<built-in function getattr>)
              3 LOAD_FAST                0 (x)
              6 LOAD_FAST                1 (y)
              9 CALL_FUNCTION            2

Calling Functions and Methods

>>> from peak.util.assembler import Call

The Call wrapper takes 1-4 arguments: the expression to be called, a sequence of positional arguments, a sequence of keyword/value pairs for explicit keyword arguments, an "*" argument, and a "**" argument. To omit any of the optional arguments, just pass in an empty sequence in its place:

>>> c = Code()
>>> c( Call(Global('type'), [Const(27)]) )

>>> dis(c.code())   # type(27)
  0           0 LOAD_GLOBAL              0 (type)
              3 LOAD_CONST               1 (27)
              6 CALL_FUNCTION            1

>>> c = Code()
>>> c(Call(Global('dict'), (), [('x', 42)]))

>>> dis(c.code())   # dict(x=42)
  0           0 LOAD_GLOBAL              0 (dict)
              3 LOAD_CONST               1 ('x')
              6 LOAD_CONST               2 (42)
              9 CALL_FUNCTION            256

>>> c = Code()
>>> c(Call(Global('foo'), (), (), Local('args'), Local('kw')))

>>> dis(c.code())   # foo(*args, **kw)
  0           0 LOAD_GLOBAL              0 (foo)
              3 LOAD_FAST                0 (args)
              6 LOAD_FAST                1 (kw)
              9 CALL_FUNCTION_VAR_KW     0

Returning Values

The Return(target) wrapper generates code for its target, followed by a RETURN_VALUE opcode:

>>> from peak.util.assembler import Return

>>> c = Code()
>>> c( Return(1) )
>>> dis(c.code())
  0           0 LOAD_CONST               1 (1)
              3 RETURN_VALUE

Code objects also have a return_() method that provides a more compact spelling of the same thing:

>>> c = Code()
>>> c.return_((1,2))
>>> dis(c.code())
  0           0 LOAD_CONST               1 (1)
              3 LOAD_CONST               2 (2)
              6 BUILD_TUPLE              2
              9 RETURN_VALUE

Both Return and return_() can be used with no argument, in which case None is returned:

>>> c = Code()
>>> c.return_()
>>> dis(c.code())
  0           0 LOAD_CONST               0 (None)
              3 RETURN_VALUE

>>> c = Code()
>>> c( Return() )
>>> dis(c.code())
  0           0 LOAD_CONST               0 (None)
              3 RETURN_VALUE

If Conditions

The If() node type generates conditional code, roughly equivalent to a Python if/else statement:

>>> from peak.util.assembler import If
>>> c = Code()
>>> c( If(Local('a'), Return(42), Return(55)) )
>>> dump(c.code())
                LOAD_FAST                0 (a)
                JUMP_IF_FALSE            L1
                POP_TOP
                LOAD_CONST               1 (42)
                RETURN_VALUE
        L1:     POP_TOP
                LOAD_CONST               2 (55)
                RETURN_VALUE

However, it can also be used like a Python 2.5+ conditional expression (regardless of the targeted Python version):

>>> c = Code()
>>> c( Return(If(Local('a'), 42, 55)) )
>>> dump(c.code())
                LOAD_FAST                0 (a)
                JUMP_IF_FALSE            L1
                POP_TOP
                LOAD_CONST               1 (42)
                JUMP_FORWARD             L2
        L1:     POP_TOP
                LOAD_CONST               2 (55)
        L2:     RETURN_VALUE

Note that If() does not do constant-folding on its condition; even if the condition is a constant, it will be tested at runtime. This avoids issues with using mutable constants, e.g.:

>>> c = Code()
>>> c(If(Const([]), 42, 55))
>>> dump(c.code())
                LOAD_CONST               1 ([])
                JUMP_IF_FALSE            L1
                POP_TOP
                LOAD_CONST               2 (42)
                JUMP_FORWARD             L2
        L1:     POP_TOP
                LOAD_CONST               3 (55)

Labels and Jump Targets

The forward reference callbacks returned by jump operations are also usable as code generation values, indicating that the jump should go to the current location. For example:

>>> c = Code()
>>> c.LOAD_CONST(99)
>>> forward = c.JUMP_IF_FALSE()
>>> c( 1, Code.POP_TOP, forward, Return(3) )
>>> dump(c.code())
                LOAD_CONST               1 (99)
                JUMP_IF_FALSE            L1
                LOAD_CONST               2 (1)
                POP_TOP
        L1:     LOAD_CONST               3 (3)
                RETURN_VALUE

However, there's an easier way to do the same thing, using Label objects:

>>> from peak.util.assembler import Label
>>> c = Code()
>>> skip = Label()

>>> c(99, skip.JUMP_IF_FALSE, 1, Code.POP_TOP, skip, Return(3))
>>> dump(c.code())
                LOAD_CONST               1 (99)
                JUMP_IF_FALSE            L1
                LOAD_CONST               2 (1)
                POP_TOP
        L1:     LOAD_CONST               3 (3)
                RETURN_VALUE

This approach has the advantage of being easy to use in complex trees. Label objects have attributes corresponding to every opcode that uses a bytecode address argument. Generating code for these attributes emits the the corresponding opcode, and generating code for the label itself defines where the previous opcodes will jump to. Labels can have multiple jumps targeting them, either before or after they are defined. But they can't be defined more than once:

>>> c(skip)
Traceback (most recent call last):
  ...
AssertionError: Label previously defined

More Conditional Jump Instructions

In Python 2.7, the traditional JUMP_IF_TRUE and JUMP_IF_FALSE instructions were replaced with four new instructions that either conditionally or unconditionally pop the value being tested. This was done to improve performance, since virtually all conditional jumps in Python code pop the value on one branch or the other.

To provide better cross-version compatibility, BytecodeAssembler emulates the old instructions on Python 2.7 by emitting a DUP_TOP followed by a POP_JUMP_IF_FALSE or POP_JUMP_IF_TRUE instruction.

However, since this decreases performance, BytecodeAssembler also emulates Python 2.7's JUMP_IF_FALSE_OR_POP and JUMP_IF_FALSE_OR_TRUE opcodes on older Pythons:

>>> c = Code()
>>> l1, l2 = Label(), Label()
>>> c(Local('a'), l1.JUMP_IF_FALSE_OR_POP, Return(27), l1)
>>> c(l2.JUMP_IF_TRUE_OR_POP, Return(42), l2, Code.RETURN_VALUE)
>>> dump(c.code())
                LOAD_FAST                0 (a)
                JUMP_IF_FALSE           L1
                POP_TOP
                LOAD_CONST               1 (27)
                RETURN_VALUE   
        L1:     JUMP_IF_TRUE            L2
                POP_TOP
                LOAD_CONST               2 (42)
                RETURN_VALUE
        L2:     RETURN_VALUE

This means that you can immediately begin using the "or-pop" variations, in place of a jump followed by a pop, and BytecodeAssembler will use the faster single instruction automatically on Python 2.7+.

BytecodeAssembler also supports using Python 2.7's conditional jumps that do unconditional pops, but currently cannot emulate them on older Python versions, so at the moment you should use them only when your code requires Python 2.7.

(Note: for ease in doctesting across Python versions, the dump() function always shows the code as if it were generated for Python 2.6 or lower, so if you need to check the actual bytecodes generated, you must use Python's dis.dis() function instead!)

N-Way Comparisons

You can generate N-way comparisons using the Compare() node type:

>>> from peak.util.assembler import Compare

>>> c = Code()
>>> c(Compare(Local('a'), [('<', Local('b'))]))
>>> dis(c.code())
  0           0 LOAD_FAST                0 (a)
              3 LOAD_FAST                1 (b)
              6 COMPARE_OP               0 (<)

3-way comparisons generate code that's a bit more complex. Here's a three-way comparison (a<b<c):

>>> c = Code()
>>> c.return_(Compare(Local('a'), [('<', Local('b')), ('<', Local('c'))]))
>>> dump(c.code())
                LOAD_FAST                0 (a)
                LOAD_FAST                1 (b)
                DUP_TOP
                ROT_THREE
                COMPARE_OP               0 (<)
                JUMP_IF_FALSE           L1
                POP_TOP
                LOAD_FAST                2 (c)
                COMPARE_OP               0 (<)
                JUMP_FORWARD            L2
        L1:     ROT_TWO
                POP_TOP
        L2:     RETURN_VALUE

And a four-way (a<b>c!=d):

>>> c = Code()
>>> c.return_(
...     Compare( Local('a'), [
...         ('<', Local('b')), ('>', Local('c')), ('!=', Local('d'))
...     ])
... )
>>> dump(c.code())
                LOAD_FAST                0 (a)
                LOAD_FAST                1 (b)
                DUP_TOP
                ROT_THREE
                COMPARE_OP               0 (<)
                JUMP_IF_FALSE           L1
                POP_TOP
                LOAD_FAST                2 (c)
                DUP_TOP
                ROT_THREE
                COMPARE_OP               4 (>)
                JUMP_IF_FALSE           L1
                POP_TOP
                LOAD_FAST                3 (d)
                COMPARE_OP               3 (!=)
                JUMP_FORWARD            L2
        L1:     ROT_TWO
                POP_TOP
        L2:     RETURN_VALUE

Sequence Unpacking

The UnpackSequence node type takes a sequence of code generation targets, and generates an UNPACK_SEQUENCE of the correct length, followed by the targets:

>>> from peak.util.assembler import UnpackSequence
>>> c = Code()  
>>> c((1,2), UnpackSequence([LocalAssign('x'), LocalAssign('y')]))
>>> dis(c.code())   # x, y = 1, 2
  0           0 LOAD_CONST               1 (1)
              3 LOAD_CONST               2 (2)
              6 BUILD_TUPLE              2
              9 UNPACK_SEQUENCE          2
             12 STORE_FAST               0 (x)
             15 STORE_FAST               1 (y)

Yield Statements

The YieldStmt node type generates the necessary opcode(s) for a yield statement, based on the target Python version. (In Python 2.5+, a POP_TOP must be generated after a YIELD_VALUE in order to create a yield statement, as opposed to a yield expression.) It also sets the code flags needed to make the resulting code object a generator:

>>> from peak.util.assembler import YieldStmt
>>> c = Code()
>>> c(YieldStmt(1), YieldStmt(2), Return(None))
>>> list(eval(c.code()))
[1, 2]

Constant Detection and Folding

The const_value() function can be used to check if an expression tree has a constant value, and to obtain that value. Simple constants are returned as-is:

>>> from peak.util.assembler import const_value

>>> simple_values = [1, 2L, 3.0, 4j+5, "6", u"7", False, None, c.code()]

>>> map(const_value, simple_values)
[1, 2L, 3.0, (5+4j), '6', u'7', False, None, <code object <lambda> ...>]

Values wrapped in a Const() are also returned as-is:

>>> map(const_value, map(Const, simple_values))
[1, 2L, 3.0, (5+4j), '6', u'7', False, None, <code object <lambda> ...>]

But no other node types produce constant values; instead, NotAConstant is raised:

>>> const_value(Local('x'))
Traceback (most recent call last):
  ...
NotAConstant: Local('x')

Tuples of constants are recursively replaced by constant tuples:

>>> const_value( (1,2) )
(1, 2)

>>> const_value( (1, (2, Const(3))) )
(1, (2, 3))

But any non-constant values anywhere in the structure cause an error:

>>> const_value( (1,Global('y')) )
Traceback (most recent call last):
  ...
NotAConstant: Global('y')

As do any types not previously described here:

>>> const_value([1,2])
Traceback (most recent call last):
  ...
NotAConstant: [1, 2]

Unless of course they're wrapped with Const:

>>> const_value(Const([1,2]))
[1, 2]

Folding Function Calls

The Call wrapper can also do simple constant folding, if all of its input parameters are constants. (Actually, the args and kwargs arguments must be sequences of constants and 2-tuples of constants, respectively.)

If a Call can thus compute its value in advance, it does so, returning a Const node instead of a Call node:

>>> Call( Const(type), [1] )
Const(<type 'int'>)

Thus, you can also take the const_value() of such calls:

>>> const_value( Call( Const(dict), [], [('x',27)] ) )
{'x': 27}

Which means that constant folding can propagate up an AST if the result is passed in to another Call:

>>> Call(Const(type), [Call( Const(dict), [], [('x',27)] )])
Const(<type 'dict'>)

Notice that this folding takes place eagerly, during AST construction. If you want to implement delayed folding after constant propagation or variable substitution, you'll need to recreate the tree, or use your own custom AST types. (See Custom Code Generation, below.)

Note that you can disable folding using the fold=False keyword argument to Call, if you want to ensure that even compile-time constants are computed at runtime. Compare:

>>> c = Code()
>>> c( Call(Const(type), [1]) )
>>> dis(c.code())
  0           0 LOAD_CONST               1 (<type 'int'>)

>>> c = Code()
>>> c( Call(Const(type), [1], fold=False) )
>>> dis(c.code())
  0           0 LOAD_CONST               1 (<type 'type'>)
              3 LOAD_CONST               2 (1)
              6 CALL_FUNCTION            1

Folding is also automatically disabled for calls with no arguments of any kind (such as globals() or locals()), whose values are much more likely to change dynamically at runtime:

>>> c = Code()
>>> c( Call(Const(locals)) )
>>> dis(c.code())
  0           0 LOAD_CONST               1 (<built-in function locals>)
              3 CALL_FUNCTION            0

Note, however, that folding is disabled for any zero-argument call, regardless of the thing being called. It is not specific to locals() and globals(), in other words.

Logical And/Or

You can evaluate logical and/or expressions using the And and Or node types:

>>> from peak.util.assembler import And, Or

>>> c = Code()
>>> c.return_( And([Local('x'), Local('y')]) )
>>> dump(c.code())
                LOAD_FAST                0 (x)
                JUMP_IF_FALSE           L1        
                POP_TOP
                LOAD_FAST                1 (y)
        L1:     RETURN_VALUE

>>> c = Code()
>>> c.return_( Or([Local('x'), Local('y')]) )
>>> dump(c.code())
                LOAD_FAST                0 (x)
                JUMP_IF_TRUE            L1
                POP_TOP
                LOAD_FAST                1 (y)
        L1:     RETURN_VALUE

True or false constants are folded automatically, avoiding code generation for intermediate values that will never be used in the result:

>>> c = Code()
>>> c.return_( And([1, 2, Local('y')]) )
>>> dis(c.code())
  0           0 LOAD_FAST                0 (y)
              3 RETURN_VALUE

>>> c = Code()
>>> c.return_( And([1, 2, Local('y'), 0]) )
>>> dump(c.code())
                LOAD_FAST                0 (y)
                JUMP_IF_FALSE           L1
                POP_TOP
                LOAD_CONST               1 (0)
        L1:     RETURN_VALUE

>>> c = Code()
>>> c.return_( Or([1, 2, Local('y')]) )
>>> dis(c.code())
  0           0 LOAD_CONST               1 (1)
              3 RETURN_VALUE

>>> c = Code()
>>> c.return_( Or([False, Local('y'), 3]) )
>>> dump(c.code())
                LOAD_FAST                0 (y)
                JUMP_IF_TRUE            L1
                POP_TOP
                LOAD_CONST               1 (3)
        L1:     RETURN_VALUE

Custom Code Generation

Code generation is extensible: you can use any callable as a code-generation target. It will be called with exactly one argument: the code object. It can then perform whatever operations are desired.

In the most trivial case, you can use any unbound Code method as a code generation target, e.g.:

>>> c = Code()
>>> c.LOAD_GLOBAL('foo')
>>> c(Call(Code.DUP_TOP, ()))
>>> dis(c.code())
  0           0 LOAD_GLOBAL              0 (foo)
              3 DUP_TOP
              4 CALL_FUNCTION            0

As you can see, the Code.DUP_TOP() is called on the code instance, causing a DUP_TOP opcode to be output. This is sometimes a handy trick for accessing values that are already on the stack. More commonly, however, you'll want to implement more sophisticated callables.

To make it easy to create diverse target types, a nodetype() decorator is provided:

>>> from peak.util.assembler import nodetype

It allows you to create code generation target types using functions. Your function should take one or more arguments, with a code=None optional argument in the last position. It should check whether code is None when called, and if so, return a tuple of the preceding arguments. If code is not None, then it should do whatever code generating tasks are required. For example:

>>> def TryFinally(block1, block2, code=None):
...     if code is None:
...         return block1, block2
...     code(
...         Code.SETUP_FINALLY,
...             block1,
...         Code.POP_BLOCK,
...             block2,
...         Code.END_FINALLY
...     )
>>> TryFinally = nodetype()(TryFinally)

Note: although the nodetype() generator can be used above the function definition in either Python 2.3 or 2.4, it cannot be done in a doctest under Python 2.3, so this document doesn't attempt to demonstrate that. Under 2.4, you would do something like this:

@nodetype()
def TryFinally(...):

and code that needs to also work under 2.3 should do something like this:

nodetype()
def TryFinally(...):

But to keep the examples here working with doctest, we'll be doing our nodetype() calls after the end of the function definitions, e.g.:

>>> def ExprStmt(value, code=None):
...     if code is None:
...         return value,
...     code( value, Code.POP_TOP )
>>> ExprStmt = nodetype()(ExprStmt)

>>> c = Code()
>>> c( TryFinally(ExprStmt(1), ExprStmt(2)) )
>>> dump(c.code())
                SETUP_FINALLY           L1
                LOAD_CONST               1 (1)
                POP_TOP
                POP_BLOCK
                LOAD_CONST               0 (None)
        L1:     LOAD_CONST               2 (2)
                POP_TOP
                END_FINALLY

The nodetype() decorator is virtually identical to the struct() decorator in the DecoratorTools package, except that it does not support *args, does not create a field for the code argument, and generates a __call__() method that reinvokes the wrapped function to do the actual code generation.

Among the benefits of this decorator are:

  • It gives your node types a great debugging format:

    >>> tf = TryFinally(ExprStmt(1), ExprStmt(2))
    >>> tf
    TryFinally(ExprStmt(1), ExprStmt(2))
    
  • It makes named fields accessible:

    >>> tf.block1
    ExprStmt(1)
    
    >>> tf.block2
    ExprStmt(2)
    
  • Hashing and comparison work as expected (handy for algorithms that require comparing or caching AST subtrees, such as common subexpression elimination):

    >>> ExprStmt(1) == ExprStmt(1)
    True
    >>> ExprStmt(1) == ExprStmt(2)
    False
    

Please see the struct decorator documentation for info on how to customize node types further.

Note: hashing only works if all the values you return in your argument tuple are hashable, so you should try to convert them if possible. For example, if an argument accepts any sequence, you should probably convert it to a tuple before returning it. Most of the examples in this document, and the node types supplied by peak.util.assembler itself do this.

Constant Folding in Custom Targets

If you want to incorporate constant-folding into your AST nodes, you can do so by checking for constant values and folding them at either construction or code generation time. For example, this And node type (a simpler version of the one included in peak.util.assembler) folds constants during code generation, by not generating unnecessary branches when it can prove which way a branch will go:

>>> from peak.util.assembler import NotAConstant

>>> def And(values, code=None):
...     if code is None:
...         return tuple(values),
...     end = Label()
...     for value in values[:-1]:
...         try:
...             if const_value(value):
...                 continue        # true constants can be skipped
...         except NotAConstant:    # but non-constants require code
...             code(value, end.JUMP_IF_FALSE_OR_POP)
...         else:       # and false constants end the chain right away
...             return code(value, end)
...     code(values[-1], end)
>>> And = nodetype()(And)

>>> c = Code()
>>> c.return_( And([1, 2]) )
>>> dis(c.code())
  0           0 LOAD_CONST               1 (2)
              3 RETURN_VALUE

>>> c = Code()
>>> c.return_( And([1, 2, Local('x')]) )
>>> dis(c.code())
  0           0 LOAD_FAST                0 (x)
              3 RETURN_VALUE

>>> c = Code()
>>> c.return_( And([Local('x'), False, 27]) )
>>> dump(c.code())
                LOAD_FAST                0 (x)
                JUMP_IF_FALSE           L1
                POP_TOP
                LOAD_CONST               1 (False)
        L1:     RETURN_VALUE

The above example only folds constants at code generation time, however. You can also do constant folding at AST construction time, using the fold_args() function. For example:

>>> from peak.util.assembler import fold_args

>>> def Getattr(ob, name, code=None):
...     try:
...         name = const_value(name)
...     except NotAConstant:
...         return Call(Const(getattr), [ob, name])
...     if code is None:
...         return fold_args(Getattr, ob, name)
...     code(ob)
...     code.LOAD_ATTR(name)
>>> Getattr = nodetype()(Getattr)

>>> const_value(Getattr(1, '__class__'))
<type 'int'>

The fold_args() function tries to evaluate the node immediately, if all of its arguments are constants, by creating a temporary Code object, and running the supplied function against it, then doing an eval() on the generated code and wrapping the result in a Const. However, if any of the arguments are non-constant, the original arguments (less the function) are returned. This causes a normal node instance to be created instead of a Const.

This isn't a very fast way of doing partial evaluation, but it makes it really easy to define new code generation targets without writing custom constant-folding code for each one. Just return fold_args(ThisType, *args) instead of return args, if you want your node constructor to be able to do eager evaluation. If you need to, you can check your parameters in order to decide whether to call fold_args() or not; this is in fact how Call implements its fold argument and the suppression of folding when the call has no arguments.

(By the way, this same Getattr node type is also available

Setting the Code's Calling Signature

The simplest way to set up the calling signature for a Code instance is to clone an existing function or code object's signature, using the Code.from_function() or Code.from_code() classmethods. These methods create a new Code instance whose calling signature (number and names of arguments) matches that of the original function or code objects:

>>> def f1(a,b,*c,**d):
...     pass

>>> c = Code.from_function(f1)
>>> f2 = new.function(c.code(), globals())

>>> import inspect

>>> tuple(inspect.getargspec(f1))
(['a', 'b'], 'c', 'd', None)

>>> tuple(inspect.getargspec(f2))
(['a', 'b'], 'c', 'd', None)

Note that these constructors do not copy any actual code from the code or function objects. They simply copy the signature, and, if you set the copy_lineno keyword argument to a true value, they will also set the created code object's co_firstlineno to match that of the original code or function object:

>>> c1 = Code.from_function(f1, copy_lineno=True)
>>> c1.co_firstlineno
1
>>> c1.co_filename is f1.func_code.co_filename
True

If you create a Code instance from a function that has nested positional arguments, the returned code object will include a prologue to unpack the arguments properly:

>>> def f3(a, (b,c), (d,(e,f))):
...     pass

>>> f4 = new.function(Code.from_function(f3).code(), globals())
>>> dis(f4)
  0           0 LOAD_FAST                1 (.1)
              3 UNPACK_SEQUENCE          2
              6 STORE_FAST               3 (b)
              9 STORE_FAST               4 (c)
             12 LOAD_FAST                2 (.2)
             15 UNPACK_SEQUENCE          2
             18 STORE_FAST               5 (d)
             21 UNPACK_SEQUENCE          2
             24 STORE_FAST               6 (e)
             27 STORE_FAST               7 (f)

This is roughly the same code that Python would generate to do the same unpacking process, and is designed so that the inspect module will recognize it as an argument unpacking prologue:

>>> tuple(inspect.getargspec(f3))
(['a', ['b', 'c'], ['d', ['e', 'f']]], None, None, None)

>>> tuple(inspect.getargspec(f4))
(['a', ['b', 'c'], ['d', ['e', 'f']]], None, None, None)

You can also use the from_spec(name='<lambda>', args=(), var=None, kw=None) classmethod to explicitly set a name and argument spec for a new code object:

>>> c = Code.from_spec('a', ('b', ('c','d'), 'e'), 'f', 'g')
>>> c.co_name
'a'

>>> c.co_varnames
['b', '.1', 'e', 'f', 'g', 'c', 'd']

>>> c.co_argcount
3

>>> tuple(inspect.getargs(c.code()))
(['b', ['c', 'd'], 'e'], 'f', 'g')

Code Attributes

Code instances have a variety of attributes corresponding to either the attributes of the Python code objects they generate, or to the current state of code generation.

For example, the co_argcount and co_varnames attributes correspond to those used in creating the code for a Python function. If you want your code to be a function, you can set them as follows:

>>> c = Code()
>>> c.co_argcount = 3
>>> c.co_varnames = ['a','b','c']

>>> c.LOAD_CONST(42)
>>> c.RETURN_VALUE()

>>> f = new.function(c.code(), globals())
>>> f(1,2,3)
42

>>> import inspect
>>> tuple(inspect.getargspec(f))
(['a', 'b', 'c'], None, None, None)

Although Python code objects want co_varnames to be a tuple, Code instances use a list, so that names can be added during code generation. The .code() method automatically creates tuples where necessary.

Here are all of the Code attributes you may want to read or write:

co_filename
A string representing the source filename for this code. If it's an actual filename, then tracebacks that pass through the generated code will display lines from the file. The default value is '<generated code>'.
co_name
The name of the function, class, or other block that this code represents. The default value is '<lambda>'.
co_argcount
Number of positional arguments a function accepts; defaults to 0
co_varnames
A list of strings naming the code's local variables, beginning with its positional argument names, followed by its * and ** argument names, if applicable, followed by any other local variable names. These names are used by the LOAD_FAST and STORE_FAST opcodes, and invoking the .LOAD_FAST(name) and .STORE_FAST(name) methods of a code object will automatically add the given name to this list, if it's not already present.
co_flags

The flags for the Python code object. This defaults to CO_OPTIMIZED | CO_NEWLOCALS, which is the correct value for a function using "fast" locals. This value is automatically or-ed with CO_NOFREE when generating a code object, if the co_cellvars and co_freevars attributes are empty. And if you use the LOAD_NAME(), STORE_NAME(), or DELETE_NAME() methods, the CO_OPTIMIZED bit is automatically reset, since these opcodes can only be used when the code is running with a real (i.e. not virtualized) locals() dictionary.

If you need to change any other flag bits besides the above, you'll need to set or clear them manually. For your convenience, the peak.util.assembler module exports all the CO_ constants used by Python. For example, you can use CO_VARARGS and CO_VARKEYWORDS to indicate whether a function accepts * or ** arguments, as long as you extend the co_varnames list accordingly. (Assuming you don't have an existing function or code object with the desired signature, in which case you could just use the from_function() or from_code() classmethods instead of messing with these low-level attributes and flags.)

stack_size

The predicted height of the runtime value stack, as of the current opcode. Its value is automatically updated by most opcodes, but if you are doing something sufficiently tricky (as in the Switch demo, below) you may need to explicitly set it.

The stack_size automatically becomes None after any unconditional jump operations, such as JUMP_FORWARD, BREAK_LOOP, or RETURN_VALUE. When the stack size is None, the only operations that can be performed are the resolving of forward references (which will set the stack size to what it was when the reference was created), or manually setting the stack size.

co_freevars
A tuple of strings naming a function's "free" variables. Defaults to an empty tuple. A function's free variables are the variables it "inherits" from its surrounding scope. If you're going to use this, you should set it only once, before generating any code that references any free or cell variables.
co_cellvars
A tuple of strings naming a function's "cell" variables. Defaults to an empty tuple. A function's cell variables are the variables that are "inherited" by one or more of its nested functions. If you're going to use this, you should set it only once, before generating any code that references any free or cell variables.

These other attributes are automatically generated and maintained, so you'll probably never have a reason to change them:

co_consts
A list of constants used by the code; the first (zeroth?) constant is always None. Normally, this is automatically maintained; the .LOAD_CONST(value) method checks to see if the constant is already present in this list, and adds it if it is not there.
co_names
A list of non-optimized or global variable names. It's automatically updated whenever you invoke a method to generate an opcode that uses such names.
co_code
A byte array containing the generated code. Don't mess with this.
co_firstlineno
The first line number of the generated code. It automatically gets set if you call .set_lineno() before generating any code; otherwise it defaults to zero.
co_lnotab
A byte array containing a generated line number table. It's automatically generated, so don't mess with it.
co_stacksize
The maximum amount of stack space the code will require to run. This value is updated automatically as you generate code or change the stack_size attribute.

Stack Size Tracking and Dead Code Detection

Code objects automatically track the predicted stack size as code is generated, by updating the stack_size attribute as each operation occurs. A history is kept so that backward jumps can be checked to ensure that the current stack height is the same as at the jump's target. Similarly, when forward jumps are resolved, the stack size at the jump target is checked against the stack size at the jump's origin. If there are multiple jumps to the same location, they must all have the same stack size at the origin and the destination.

In addition, whenever any unconditional jump code is generated (i.e. JUMP_FORWARD, BREAK_LOOP, CONTINUE_LOOP, JUMP_ABSOLUTE, or RETURN_VALUE), the predicted stack_size is set to None. This means that the Code object does not know what the stack size will be at the current location. You cannot issue any instructions when the predicted stack size is None, as you will receive an AssertionError:

>>> c = Code()
>>> fwd = c.JUMP_FORWARD()
>>> print c.stack_size  # forward jump marks stack size as unknown
None

>>> c.LOAD_CONST(42)
Traceback (most recent call last):
  ...
AssertionError: Unknown stack size at this location

Instead, you must resolve a forward reference (or define a previously-jumped to label). This will propagate the stack size at the source of the jump to the current location, updating the stack size:

>>> fwd()
>>> c.stack_size
0

Note, by the way, that this means it is impossible for you to generate static "dead code". In other words, you cannot generate code that isn't reachable. You should therefore check if stack_size is None before generating code that might be unreachable. For example, consider this If implementation:

>>> def If(cond, then, else_=Pass, code=None):
...     if code is None:
...         return cond, then, else_
...     else_clause = Label()
...     end_if = Label()
...     code(cond, else_clause.JUMP_IF_FALSE_OR_POP, then)
...     code(end_if.JUMP_FORWARD, else_clause, Code.POP_TOP, else_)
...     code(end_if)
>>> If = nodetype()(If)

It works okay if there's no dead code:

>>> c = Code()
>>> c( If(Local('a'), 42, 55) )
>>> dump(c.code())
                LOAD_FAST                0 (a)
                JUMP_IF_FALSE           L1
                POP_TOP
                LOAD_CONST               1 (42)
                JUMP_FORWARD            L2
        L1:     POP_TOP
                LOAD_CONST               2 (55)

But it breaks if you end the "then" block with a return:

>>> c = Code()
>>> c( If(23, Return(42), 55) )
Traceback (most recent call last):
  ...
AssertionError: Unknown stack size at this location

What we need is something like this instead:

>>> def If(cond, then, else_=Pass, code=None):
...     if code is None:
...         return cond, then, else_
...     else_clause = Label()
...     end_if = Label()
...     code(cond, else_clause.JUMP_IF_FALSE_OR_POP, then)
...     if code.stack_size is not None:
...         end_if.JUMP_FORWARD(code)
...     code(else_clause, Code.POP_TOP, else_, end_if)           
>>> If = nodetype()(If)

As you can see, the dead code is now eliminated:

>>> c = Code()
>>> c( If(Local('a'), Return(42), 55) )
>>> dump(c.code())
                LOAD_FAST                0 (a)
                JUMP_IF_FALSE           L1
                POP_TOP
                LOAD_CONST               1 (42)
                RETURN_VALUE
        L1:     POP_TOP
                LOAD_CONST               2 (55)

Blocks, Loops, and Exception Handling

The Python SETUP_FINALLY, SETUP_EXCEPT, and SETUP_LOOP opcodes all create "blocks" that go on the frame's "block stack" at runtime. Each of these opcodes must be matched with exactly one POP_BLOCK opcode -- no more, and no less. Code objects enforce this using an internal block stack that matches each setup with its corresponding POP_BLOCK. Trying to pop a nonexistent block, or trying to generate code when unclosed blocks exist is an error:

>>> c = Code()
>>> c.POP_BLOCK()
Traceback (most recent call last):
  ...
AssertionError: Not currently in a block

>>> c.SETUP_FINALLY()
>>> c.code()
Traceback (most recent call last):
  ...
AssertionError: 1 unclosed block(s)

>>> c.POP_BLOCK()
>>> c.code()
<code object <lambda> ...>

Exception Stack Size Adjustment

When you issue a SETUP_EXCEPT or SETUP_FINALLY, the code's maximum stack size is raised to ensure that it's at least 3 items higher than the current stack size. That way, there will be room for the items that Python puts on the stack when jumping to a block's exception handling code:

>>> c = Code()
>>> c.SETUP_FINALLY()
>>> c.stack_size, c.co_stacksize
(0, 3)

As you can see, the current stack size is unchanged, but the maximum stack size has increased. This increase is relative to the current stack size, though; it's not an absolute increase:

>>> c = Code()
>>> c(1,2,3,4, *[Code.POP_TOP]*4)   # push 4 things, then pop 'em
>>> c.SETUP_FINALLY()
>>> c.stack_size, c.co_stacksize
(0, 4)

And this stack adjustment doesn't happen for loops, because they don't have exception handlers:

>>> c = Code()
>>> c.SETUP_LOOP()
>>> c.stack_size, c.co_stacksize
(0, 0)

Try/Except Blocks

In the case of SETUP_EXCEPT, the current stack size is increased by 3 after a POP_BLOCK, because the code that follows will be an exception handler and will thus always have exception items on the stack:

>>> c = Code()
>>> c.SETUP_EXCEPT()
>>> else_ = c.POP_BLOCK()
>>> c.stack_size, c.co_stacksize
(3, 3)

When a POP_BLOCK() is matched with a SETUP_EXCEPT, it automatically emits a JUMP_FORWARD and returns a forward reference that should be called back when the "else" clause or end of the entire try/except statement is reached:

>>> c.POP_TOP()     # get rid of exception info
>>> c.POP_TOP()
>>> c.POP_TOP()
>>> else_()
>>> c.return_()
>>> dump(c.code())
                SETUP_EXCEPT            L1
                POP_BLOCK
                JUMP_FORWARD            L2
        L1:     POP_TOP
                POP_TOP
                POP_TOP
        L2:     LOAD_CONST               0 (None)
                RETURN_VALUE

In the example above, an empty block executes with an exception handler that begins at offset 7. When the block is done, it jumps forward to the end of the try/except construct at offset 10. The exception handler does nothing but remove the exception information from the stack before it falls through to the end.

Note, by the way, that it's usually easier to use labels to define blocks like this:

>>> c = Code()
>>> done = Label()
>>> c(
...     done.SETUP_EXCEPT,
...     done.POP_BLOCK,
...         Code.POP_TOP, Code.POP_TOP, Code.POP_TOP,
...     done,
...     Return()
... )

>>> dump(c.code())
                SETUP_EXCEPT             L1
                POP_BLOCK
                JUMP_FORWARD             L2
        L1:     POP_TOP
                POP_TOP
                POP_TOP
        L2:     LOAD_CONST               0 (None)
                RETURN_VALUE

(Labels have a POP_BLOCK attribute that you can pass in when generating code.)

And, for generating typical try/except blocks, you can use the TryExcept node type, which takes a body, a sequence of exception-type/handler pairs, and an optional "else" clause:

>>> from peak.util.assembler import TryExcept
>>> c = Code()
>>> c.return_(
...     TryExcept(
...         Return(1),                                      # body
...         [(Const(KeyError),2), (Const(TypeError),3)],    # handlers
...         Return(4)                                       # else clause
...     )
... )

>>> dump(c.code())
                SETUP_EXCEPT            L1
                LOAD_CONST               1 (1)
                RETURN_VALUE
                POP_BLOCK
                JUMP_FORWARD            L4
        L1:     DUP_TOP
                LOAD_CONST               2 (<...exceptions.KeyError...>)
                COMPARE_OP              10 (exception match)
                JUMP_IF_FALSE           L2
                POP_TOP
                POP_TOP
                POP_TOP
                POP_TOP
                LOAD_CONST               3 (2)
                JUMP_FORWARD            L5
        L2:     POP_TOP
                DUP_TOP
                LOAD_CONST               4 (<...exceptions.TypeError...>)
                COMPARE_OP              10 (exception match)
                JUMP_IF_FALSE           L3
                POP_TOP
                POP_TOP
                POP_TOP
                POP_TOP
                LOAD_CONST               5 (3)
                JUMP_FORWARD            L5
        L3:     POP_TOP
                END_FINALLY
        L4:     LOAD_CONST               6 (4)
                RETURN_VALUE
        L5:     RETURN_VALUE

Try/Finally Blocks

When a POP_BLOCK() is matched with a SETUP_FINALLY, it automatically emits a LOAD_CONST(None), so that when the corresponding END_FINALLY is reached, it will know that the "try" block exited normally. Thus, the normal pattern for producing a try/finally construct is as follows:

>>> c = Code()
>>> c.SETUP_FINALLY()
>>> # "try" suite goes here
>>> c.POP_BLOCK()
>>> # "finally" suite goes here
>>> c.END_FINALLY()

And it produces code that looks like this:

>>> dump(c.code())
                SETUP_FINALLY           L1
                POP_BLOCK
                LOAD_CONST               0 (None)
        L1:     END_FINALLY

The END_FINALLY opcode will remove 1, 2, or 3 values from the stack at runtime, depending on how the "try" block was exited. In the case of simply "falling off the end" of the "try" block, however, the inserted LOAD_CONST(None) puts one value on the stack, and that one value is popped off by the END_FINALLY. For that reason, Code objects treat END_FINALLY as if it always popped exactly one value from the stack, even though at runtime this may vary. This means that the estimated stack levels within the "finally" clause may not be accurate -- which is why POP_BLOCK() adjusts the maximum expected stack size to accomodate up to three values being put on the stack by the Python interpreter for exception handling.

For your convenience, the TryFinally node type can also be used to generate try/finally blocks:

>>> from peak.util.assembler import TryFinally
>>> c = Code()
>>> c( TryFinally(ExprStmt(1), ExprStmt(2)) )
>>> dump(c.code())
                SETUP_FINALLY           L1
                LOAD_CONST               1 (1)
                POP_TOP
                POP_BLOCK
                LOAD_CONST               0 (None)
        L1:     LOAD_CONST               2 (2)
                POP_TOP
                END_FINALLY

Loops

The POP_BLOCK for a loop marks the end of the loop body, and the beginning of the "else" clause, if there is one. It returns a forward reference that should be called back either at the end of the "else" clause, or immediately if there is no "else". Any BREAK_LOOP opcodes that appear in the loop body will jump ahead to the point at which the forward reference is resolved.

Here, we'll generate a loop that counts down from 5 to 0, with an "else" clause that returns 42. Three labels are needed: one to mark the end of the overall block, one that's looped back to, and one that marks the "else" clause:

>>> c = Code()
>>> block = Label()
>>> loop = Label()
>>> else_ = Label()
>>> c(
...     block.SETUP_LOOP,
...         5,      # initial setup - this could be a GET_ITER instead
...     loop,
...         else_.JUMP_IF_FALSE,        # while x:
...         1, Code.BINARY_SUBTRACT,    #     x -= 1
...         loop.CONTINUE_LOOP,
...     else_,                          # else:
...         Code.POP_TOP,
...     block.POP_BLOCK,
...         Return(42),                 #     return 42
...     block,
...     Return()
... )

>>> dump(c.code())
                SETUP_LOOP              L3
                LOAD_CONST               1 (5)
        L1:     JUMP_IF_FALSE           L2
                LOAD_CONST               2 (1)
                BINARY_SUBTRACT
                JUMP_ABSOLUTE           L1
        L2:     POP_TOP
                POP_BLOCK
                LOAD_CONST               3 (42)
                RETURN_VALUE
        L3:     LOAD_CONST               0 (None)
                RETURN_VALUE

>>> eval(c.code())
42

Break and Continue

The BREAK_LOOP and CONTINUE_LOOP opcodes can only be used inside of an active loop:

>>> c = Code()
>>> c.BREAK_LOOP()
Traceback (most recent call last):
  ...
AssertionError: Not inside a loop

>>> c.CONTINUE_LOOP(c.here())
Traceback (most recent call last):
  ...
AssertionError: Not inside a loop

And CONTINUE_LOOP is automatically replaced with a JUMP_ABSOLUTE if it occurs directly inside a loop block:

>>> c.LOAD_CONST(57)
>>> c.SETUP_LOOP()
>>> fwd = c.JUMP_IF_TRUE()
>>> c.CONTINUE_LOOP(c.here())
>>> fwd()
>>> c.BREAK_LOOP()
>>> c.POP_BLOCK()()
>>> dump(c.code())
                LOAD_CONST               1 (57)
                SETUP_LOOP              L3
                JUMP_IF_TRUE            L2
        L1:     JUMP_ABSOLUTE           L1
        L2:     BREAK_LOOP
                POP_BLOCK

In other words, CONTINUE_LOOP only really emits a CONTINUE_LOOP opcode if it's inside some other kind of block within the loop, e.g. a "try" clause:

>>> c = Code()
>>> c.LOAD_CONST(57)
>>> c.SETUP_LOOP()
>>> loop = c.here()
>>> c.SETUP_FINALLY()
>>> fwd = c.JUMP_IF_TRUE()
>>> c.CONTINUE_LOOP(loop)
>>> fwd()
>>> c.POP_BLOCK()
>>> c.END_FINALLY()
>>> c.POP_BLOCK()()
>>> dump(c.code())
                LOAD_CONST               1 (57)
                SETUP_LOOP              L4
        L1:     SETUP_FINALLY           L3
                JUMP_IF_TRUE            L2
                CONTINUE_LOOP           L1
        L2:     POP_BLOCK
                LOAD_CONST               0 (None)
        L3:     END_FINALLY
                POP_BLOCK

for Loops

There is a For() node type available for generating simple loops (without break/continue support). It takes an iterable expression, an assignment clause, and a loop body:

>>> from peak.util.assembler import For
>>> y = Call(Const(range), (3,))
>>> x = LocalAssign('x')
>>> body = Suite([Local('x'), Code.PRINT_EXPR])

>>> c = Code()
>>> c(For(y, x, body))  # for x in range(3): print x
>>> c.return_()
>>> dump(c.code())
                LOAD_CONST               1 ([0, 1, 2])
                GET_ITER
        L1:     FOR_ITER                L2
                STORE_FAST               0 (x)
                LOAD_FAST                0 (x)
                PRINT_EXPR
                JUMP_ABSOLUTE           L1
        L2:     LOAD_CONST               0 (None)
                RETURN_VALUE

The arguments are given in execution order: first the "in" value of the loop, then the assignment to a loop variable, and finally the body of the loop. The distinction between the assignment and body, however, is only for clarity and convenience (to avoid needing to glue the assignment to the body with a Suite). If you already have a suite or only need one node for the entire loop body, you can do the same thing with only two arguments:

>>> c = Code()
>>> c(For(y, Code.PRINT_EXPR))
>>> c.return_()
>>> dump(c.code())
                LOAD_CONST               1 ([0, 1, 2])
                GET_ITER
        L1:     FOR_ITER                L2
                PRINT_EXPR
                JUMP_ABSOLUTE           L1
        L2:     LOAD_CONST               0 (None)
                RETURN_VALUE

Notice, by the way, that For() does NOT set up a loop block for you, so if you want to be able to use break and continue, you'll need to wrap the loop in a labelled SETUP_LOOP/POP_BLOCK pair, as described in the preceding sections.

List Comprehensions

In order to generate correct list comprehension code for the target Python version, you must use the ListComp() and LCAppend() node types. This is because Python versions 2.4 and up store the list being built in a temporary variable, and use a special LIST_APPEND opcode to append values, while 2.3 stores the list's append() method in the temporary variable, and calls it to append values.

The ListComp() node wraps a code body (usually a For() loop) and manages the creation and destruction of a temporary variable (e.g. _[1], _[2], etc.). The LCAppend() node type wraps a value or expression to be appended to the innermost active ListComp() in progress:

>>> from peak.util.assembler import ListComp, LCAppend
>>> c = Code()
>>> simple = ListComp(For(y, x, LCAppend(Local('x'))))
>>> c.return_(simple)
>>> eval(c.code())
[0, 1, 2]

>>> c = Code()
>>> c.return_(ListComp(For(y, x, LCAppend(simple))))
>>> eval(c.code())
[[0, 1, 2], [0, 1, 2], [0, 1, 2]]

Closures and Nested Functions

Free and Cell Variables

To implement closures and nested scopes, your code objects must use "free" or "cell" variables in place of regular "fast locals". A "free" variable is one that is defined in an outer scope, and a "cell" variable is one that's defined in the current scope, but will also be used by nested functions.

The simplest way to set up free or cell variables is to use a code object's makefree(names) and makecells(names) methods:

>>> c = Code()
>>> c.co_cellvars
()
>>> c.co_freevars
()

>>> c.makefree(['x', 'y'])
>>> c.makecells(['z'])

>>> c.co_cellvars
('z',)
>>> c.co_freevars
('x', 'y')

When a name has been defined as a free or cell variable, the _DEREF opcode variants are used to generate Local() and LocalAssign() nodes:

>>> c((Local('x'), Local('y')), LocalAssign('z'))
>>> dis(c.code())
  0           0 LOAD_DEREF               1 (x)
              3 LOAD_DEREF               2 (y)
              6 BUILD_TUPLE              2
              9 STORE_DEREF              0 (z)

If you have already written code in a code object that operates on the relevant locals, the code is retroactively patched to use the _DEREF opcodes:

>>> c = Code()
>>> c((Local('x'), Local('y')), LocalAssign('z'))
>>> dis(c.code())
  0           0 LOAD_FAST                0 (x)
              3 LOAD_FAST                1 (y)
              6 BUILD_TUPLE              2
              9 STORE_FAST               2 (z)

>>> c.makefree(['x', 'y'])
>>> c.makecells(['z'])

>>> dis(c.code())
  0           0 LOAD_DEREF               1 (x)
              3 LOAD_DEREF               2 (y)
              6 BUILD_TUPLE              2
              9 STORE_DEREF              0 (z)

This means that you can defer the decision of which locals are free/cell variables until the code is ready to be generated. In fact, by passing in a "parent" code object to the .code() method, you can get BytecodeAssembler to automatically call makefree() and makecells() for the correct variable names in the child and parent code objects, as we'll see in the next section.

Nested Code Objects

To create a code object for use in a nested scope, you can use the parent code object's nested() method. It works just like the from_spec() classmethod, except that the co_filename of the parent is copied to the child:

>>> p = Code()
>>> p.co_filename = 'testname'

>>> c = p.nested('sub', ['a','b'], 'c', 'd')

>>> c.co_name
'sub'

>>> c.co_filename
'testname'

>>> tuple(inspect.getargs(c.code(p)))
(['a', 'b'], 'c', 'd')

Notice that you must pass the parent code object to the child's .code() method to ensure that free/cell variables are properly set up. When the code() method is given another code object as a parameter, it automatically converts any locally-read (but not written) to "free" variables in the child code, and ensures that those same variables become "cell" variables in the supplied parent code object:

>>> p.LOAD_CONST(42)
>>> p(LocalAssign('a'))
>>> dis(p.code())
  0           0 LOAD_CONST               1 (42)
              3 STORE_FAST               0 (a)

>>> c = p.nested()
>>> c(Local('a'))

>>> dis(c.code(p))
  0           0 LOAD_DEREF               0 (a)

>>> dis(p.code())
  0           0 LOAD_CONST               1 (42)
              3 STORE_DEREF              0 (a)

Notice that the STORE_FAST in the parent code object was automatically patched to a STORE_DEREF, with an updated offset if applicable. Any future use of Local('a') or LocalAssign('a') in the parent or child code objects will now refer to the free/cell variable, rather than the "local" variable:

>>> p(Local('a'))
>>> dis(p.code())
  0           0 LOAD_CONST               1 (42)
              3 STORE_DEREF              0 (a)
              6 LOAD_DEREF               0 (a)

>>> c(LocalAssign('a'))
>>> dis(c.code(p))
  0           0 LOAD_DEREF               0 (a)
              3 STORE_DEREF              0 (a)

Function()

The Function(body, name='<lambda>', args=(), var=None, kw=None, defaults=()) node type creates a function object from the specified body and the optional name, argument specs, and defaults. The Function() node generates code to create the function object with the appropriate defaults and closure (if applicable), and any needed free/cell variables are automatically set up in the parent and child code objects. The newly generated function will be on top of the stack at the end of the generated code:

>>> from peak.util.assembler import Function
>>> c = Code()
>>> c.co_filename = '<string>'
>>> c.return_(Function(Return(Local('a')), 'f', ['a'], defaults=[42]))
>>> dis(c.code())
  0           0 LOAD_CONST               1 (42)
              3 LOAD_CONST               2 (<... f ..., file "<string>", line -1>)
              6 MAKE_FUNCTION            1
              9 RETURN_VALUE

Now that we've generated the code for a function returning a function, let's run it, to get the function we defined:

>>> f = eval(c.code())
>>> f
<function f at ...>

>>> tuple(inspect.getargspec(f))
(['a'], None, None, (42,))

>>> f()
42

>>> f(99)
99

Now let's create a doubly nested function, with some extras:

>>> c = Code()
>>> c.co_filename = '<string>'
>>> c.return_(
...     Function(Return(Function(Return(Local('a')))),
...     'f', ['a', 'b'], 'c', 'd', [99, 66])
... )
>>> dis(c.code())
  0           0 LOAD_CONST               1 (99)
              3 LOAD_CONST               2 (66)
              6 LOAD_CONST               3 (<... f ..., file "<string>", line -1>)
              9 MAKE_FUNCTION            2
             12 RETURN_VALUE

>>> f = eval(c.code())
>>> f
<function f at ...>

>>> tuple(inspect.getargspec(f))
(['a', 'b'], 'c', 'd', (99, 66))

>>> dis(f)
  0           0 LOAD_CLOSURE             0 (a)
              ... LOAD_CONST               1 (<... <lambda> ..., file "<string>", line -1>)
              ... MAKE_CLOSURE             0
              ... RETURN_VALUE

>>> dis(f())
  0           0 LOAD_DEREF               0 (a)
              3 RETURN_VALUE    

>>> f(42)()
42

>>> f()()
99

As you can see, Function() not only takes care of setting up free/cell variables in all the relevant scopes, it also chooses whether to use MAKE_FUNCTION or MAKE_CLOSURE, and generates code for the defaults.

(Note, by the way, that the defaults argument should be a sequence of generatable expressions; in the examples here, we used numbers, but they could have been arbitrary expression nodes.)

Internals and Doctests

Line number tracking:

>>> def simple_code(flno, slno, consts=1, ):
...     c = Code()
...     c.set_lineno(flno)
...     for i in range(consts): c.LOAD_CONST(None)
...     c.set_lineno(slno)
...     c.RETURN_VALUE()
...     return c.code()

>>> dis(simple_code(1,1))
  1           0 LOAD_CONST               0 (None)
              3 RETURN_VALUE

>>> simple_code(1,1).co_stacksize
1

>>> dis(simple_code(13,414))
 13           0 LOAD_CONST               0 (None)
414           3 RETURN_VALUE

>>> dis(simple_code(13,14,100))
 13           0 LOAD_CONST               0 (None)
              3 LOAD_CONST               0 (None)
...
 14         300 RETURN_VALUE

>>> simple_code(13,14,100).co_stacksize
100

>>> dis(simple_code(13,572,120))
 13           0 LOAD_CONST               0 (None)
              3 LOAD_CONST               0 (None)
...
572         360 RETURN_VALUE

Stack size tracking:

>>> c = Code()          # 0
>>> c.LOAD_CONST(1)     # 1
>>> c.POP_TOP()         # 0
>>> c.LOAD_CONST(2)     # 1
>>> c.LOAD_CONST(3)     # 2
>>> c.co_stacksize
2
>>> c.stack_history
[0, ..., 1, 0, ..., 1]
>>> c.BINARY_ADD()      # 1
>>> c.LOAD_CONST(4)     # 2
>>> c.co_stacksize
2
>>> c.stack_history
[0, ..., 1, 0, 1, ..., 2, ..., 1]
>>> c.LOAD_CONST(5)
>>> c.LOAD_CONST(6)
>>> c.co_stacksize
4
>>> c.POP_TOP()
>>> c.stack_size
3

Stack underflow detection/recovery, and global/local variable names:

>>> c = Code()
>>> c.LOAD_GLOBAL('foo')
>>> c.stack_size
1
>>> c.STORE_ATTR('bar')     # drops stack by 2
Traceback (most recent call last):
  ...
AssertionError: Stack underflow

>>> c.co_names  # 'bar' isn't added unless success
['foo']

>>> c.LOAD_ATTR('bar')
>>> c.co_names
['foo', 'bar']

>>> c.DELETE_FAST('baz')
>>> c.co_varnames
['baz']

>>> dis(c.code())
  0           0 LOAD_GLOBAL              0 (foo)
              3 LOAD_ATTR                1 (bar)
              6 DELETE_FAST              0 (baz)

Code iteration:

>>> c.DUP_TOP()
>>> c.return_(Code.POP_TOP)
>>> list(c) == [
...     (0, op.LOAD_GLOBAL, 0),
...     (3, op.LOAD_ATTR, 1),
...     (6, op.DELETE_FAST, 0),
...     (9, op.DUP_TOP, None),
...     (10, op.POP_TOP, None),
...     (11, op.RETURN_VALUE, None)
... ]
True

Code patching:

>>> c = Code()
>>> c.LOAD_CONST(42)
>>> c.STORE_FAST('x')
>>> c.LOAD_FAST('x')
>>> c.DELETE_FAST('x')
>>> c.RETURN_VALUE()

>>> dis(c.code())
  0           0 LOAD_CONST               1 (42)
              3 STORE_FAST               0 (x)
              6 LOAD_FAST                0 (x)
              9 DELETE_FAST              0 (x)
             12 RETURN_VALUE


>>> c.co_varnames
['x']
>>> c.co_varnames.append('y')

>>> c._patch(
...     {op.LOAD_FAST:  op.LOAD_FAST,
...      op.STORE_FAST: op.STORE_FAST,
...      op.DELETE_FAST: op.DELETE_FAST},
...     {0: 1}
... )

>>> dis(c.code())
  0           0 LOAD_CONST               1 (42)
              3 STORE_FAST               1 (y)
              6 LOAD_FAST                1 (y)
              9 DELETE_FAST              1 (y)
             12 RETURN_VALUE

>>> c._patch({op.RETURN_VALUE: op.POP_TOP})
>>> dis(c.code())
  0           0 LOAD_CONST               1 (42)
              3 STORE_FAST               1 (y)
              6 LOAD_FAST                1 (y)
              9 DELETE_FAST              1 (y)
             12 POP_TOP

Converting locals to free/cell vars:

>>> c = Code()
>>> c.LOAD_CONST(42)
>>> c.STORE_FAST('x')
>>> c.LOAD_FAST('x')

>>> dis(c.code())
  0           0 LOAD_CONST               1 (42)
              3 STORE_FAST               0 (x)
              6 LOAD_FAST                0 (x)

>>> c.co_freevars = 'y', 'x'
>>> c.co_cellvars = 'z',

>>> c._locals_to_cells()
>>> dis(c.code())
  0           0 LOAD_CONST               1 (42)
              3 STORE_DEREF              2 (x)
              6 LOAD_DEREF               2 (x)

>>> c.DELETE_FAST('x')
>>> c._locals_to_cells()
Traceback (most recent call last):
  ...
AssertionError: Can't delete local 'x' used in nested scope

>>> c = Code()
>>> c.LOAD_CONST(42)
>>> c.STORE_FAST('x')
>>> c.LOAD_FAST('x')

>>> c.co_freevars
()
>>> c.makefree(['x'])
>>> c.co_freevars
('x',)

>>> dis(c.code())
  0           0 LOAD_CONST               1 (42)
              3 STORE_DEREF              0 (x)
              6 LOAD_DEREF               0 (x)

>>> c = Code()
>>> c.LOAD_CONST(42)
>>> c.STORE_FAST('x')
>>> c.LOAD_FAST('x')
>>> c.makecells(['x'])
>>> c.co_freevars
()
>>> c.co_cellvars
('x',)
>>> dis(c.code())
  0           0 LOAD_CONST               1 (42)
              3 STORE_DEREF              0 (x)
              6 LOAD_DEREF               0 (x)

>>> c = Code()
>>> c.LOAD_CONST(42)
>>> c.STORE_FAST('x')
>>> c.LOAD_FAST('x')
>>> c.makefree('x')
>>> c.makecells(['y'])
>>> c.co_freevars
('x',)
>>> c.co_cellvars
('y',)
>>> dis(c.code())
  0           0 LOAD_CONST               1 (42)
              3 STORE_DEREF              1 (x)
              6 LOAD_DEREF               1 (x)

>>> c = Code()
>>> c.co_flags &= ~op.CO_OPTIMIZED
>>> c.makecells(['q'])
Traceback (most recent call last):
  ...
AssertionError: Can't use cellvars in unoptimized scope

Auto-free promotion with code parent:

>>> p = Code()
>>> c = Code()
>>> c.LOAD_FAST('x')
>>> dis(c.code(p))
  0           0 LOAD_DEREF               0 (x)
>>> p.co_cellvars
('x',)
>>> p = Code()
>>> c = Code.from_function(lambda x,y,z=2: None)
>>> c.LOAD_FAST('x')
>>> c.LOAD_FAST('y')
>>> c.LOAD_FAST('z')
>>> dis(c.code(p))
  0           0 LOAD_FAST                0 (x)
              3 LOAD_FAST                1 (y)
              6 LOAD_FAST                2 (z)
>>> p.co_cellvars
()
>>> c.LOAD_FAST('q')
>>> dis(c.code(p))
  0           0 LOAD_FAST                0 (x)
              3 LOAD_FAST                1 (y)
              6 LOAD_FAST                2 (z)
              9 LOAD_DEREF               0 (q)
>>> p.co_cellvars
('q',)
>>> p = Code()
>>> c = Code.from_function(lambda x,*y,**z: None)
>>> c.LOAD_FAST('q')
>>> c.LOAD_FAST('x')
>>> c.LOAD_FAST('y')
>>> c.LOAD_FAST('z')
>>> dis(c.code(p))
  0           0 LOAD_DEREF               0 (q)
              3 LOAD_FAST                0 (x)
              6 LOAD_FAST                1 (y)
              9 LOAD_FAST                2 (z)
>>> p.co_cellvars
('q',)
>>> p = Code()
>>> c = Code.from_function(lambda x,*y: None)
>>> c.LOAD_FAST('x')
>>> c.LOAD_FAST('y')
>>> c.LOAD_FAST('z')
>>> dis(c.code(p))
  0           0 LOAD_FAST                0 (x)
              3 LOAD_FAST                1 (y)
              6 LOAD_DEREF               0 (z)
>>> p.co_cellvars
('z',)
>>> p = Code()
>>> c = Code.from_function(lambda x,**y: None)
>>> c.LOAD_FAST('x')
>>> c.LOAD_FAST('y')
>>> c.LOAD_FAST('z')
>>> dis(c.code(p))
  0           0 LOAD_FAST                0 (x)
              3 LOAD_FAST                1 (y)
              6 LOAD_DEREF               0 (z)
>>> p.co_cellvars
('z',)

Stack tracking on jumps:

>>> c = Code()
>>> else_ = Label()
>>> end = Label()
>>> c(99, else_.JUMP_IF_TRUE_OR_POP, end.JUMP_FORWARD)
>>> c(else_, Code.POP_TOP, end)
>>> dump(c.code())
                LOAD_CONST               1 (99)
                JUMP_IF_TRUE            L1
                POP_TOP
                JUMP_FORWARD            L2
        L1:     POP_TOP

>>> c.stack_size
0
>>> if sys.version>='2.7':
...     print c.stack_history == [0, 1, 1, 1,    0, 0, 0, None, None, 1]
... else:
...     print c.stack_history == [0, 1, 1, 1, 1, 1, 1, 0, None, None, 1]
True


>>> c = Code()
>>> fwd = c.JUMP_FORWARD()
>>> c.LOAD_CONST(42)    # forward jump marks stack size unknown
Traceback (most recent call last):
  ...
AssertionError: Unknown stack size at this location

>>> c.stack_size = 0
>>> c.LOAD_CONST(42)
>>> fwd()
Traceback (most recent call last):
  ...
AssertionError: Stack level mismatch: actual=1 expected=0

>>> from peak.util.assembler import For
>>> c = Code()
>>> c(For((), Code.POP_TOP, Pass))
>>> c.return_()
>>> dump(c.code())
                BUILD_TUPLE              0
                GET_ITER
        L1:     FOR_ITER                L2
                POP_TOP
                JUMP_ABSOLUTE           L1
        L2:     LOAD_CONST               0 (None)
                RETURN_VALUE

>>> c.stack_history
[0, 1, 1, 1, 1, 2, 2, 2, 1, None, None, 0, 1, 1, 1]

Yield value:

>>> import sys
>>> from peak.util.assembler import CO_GENERATOR
>>> c = Code()
>>> c.co_flags & CO_GENERATOR
0
>>> c(42, Code.YIELD_VALUE)
>>> c.stack_size == int(sys.version>='2.5')
True
>>> (c.co_flags & CO_GENERATOR) == CO_GENERATOR
True

Sequence operators and stack tracking:

Function calls and raise:

>>> c = Code()
>>> c.LOAD_GLOBAL('locals')
>>> c.CALL_FUNCTION()   # argc/kwargc default to 0
>>> c.POP_TOP()
>>> c.LOAD_GLOBAL('foo')
>>> c.LOAD_CONST(1)
>>> c.LOAD_CONST('x')
>>> c.LOAD_CONST(2)
>>> c.CALL_FUNCTION(1,1)    # argc, kwargc
>>> c.POP_TOP()

>>> dis(c.code())
  0           0 LOAD_GLOBAL              0 (locals)
              3 CALL_FUNCTION            0
              6 POP_TOP
              7 LOAD_GLOBAL              1 (foo)
             10 LOAD_CONST               1 (1)
             13 LOAD_CONST               2 ('x')
             16 LOAD_CONST               3 (2)
             19 CALL_FUNCTION          257
             22 POP_TOP

>>> c = Code()
>>> c.LOAD_GLOBAL('foo')
>>> c.LOAD_CONST(1)
>>> c.LOAD_CONST('x')
>>> c.LOAD_CONST(2)
>>> c.BUILD_MAP(0)
>>> c.stack_size
5
>>> c.CALL_FUNCTION_KW(1,1)
>>> c.POP_TOP()
>>> c.stack_size
0

>>> c = Code()
>>> c.LOAD_GLOBAL('foo')
>>> c.LOAD_CONST(1)
>>> c.LOAD_CONST('x')
>>> c.LOAD_CONST(1)
>>> c.BUILD_TUPLE(1)
>>> c.CALL_FUNCTION_VAR(0,1)
>>> c.POP_TOP()
>>> c.stack_size
0

>>> c = Code()
>>> c.LOAD_GLOBAL('foo')
>>> c.LOAD_CONST(1)
>>> c.LOAD_CONST('x')
>>> c.LOAD_CONST(1)
>>> c.BUILD_TUPLE(1)
>>> c.BUILD_MAP(0)
>>> c.CALL_FUNCTION_VAR_KW(0,1)
>>> c.POP_TOP()
>>> c.stack_size
0

>>> c = Code()
>>> c.RAISE_VARARGS(0)
>>> c.RAISE_VARARGS(1)
Traceback (most recent call last):
  ...
AssertionError: Stack underflow
>>> c.LOAD_CONST(1)
>>> c.RAISE_VARARGS(1)

>>> dis(c.code())
  0           0 RAISE_VARARGS            0
              3 LOAD_CONST               1 (1)
              6 RAISE_VARARGS            1

Sequence building, unpacking, dup'ing:

>>> c = Code()
>>> c.LOAD_CONST(1)
>>> c.LOAD_CONST(2)
>>> c.BUILD_TUPLE(3)
Traceback (most recent call last):
  ...
AssertionError: Stack underflow

>>> c.BUILD_LIST(3)
Traceback (most recent call last):
  ...
AssertionError: Stack underflow

>>> c.BUILD_TUPLE(2)
>>> c.stack_size
1

>>> c.UNPACK_SEQUENCE(2)
>>> c.stack_size
2
>>> c.DUP_TOPX(3)
Traceback (most recent call last):
  ...
AssertionError: Stack underflow

>>> c.DUP_TOPX(2)
>>> c.stack_size
4
>>> c.LOAD_CONST(3)
>>> c.BUILD_LIST(5)
>>> c.stack_size
1
>>> c.UNPACK_SEQUENCE(5)
>>> c.BUILD_SLICE(3)
>>> c.stack_size
3
>>> c.BUILD_SLICE(3)
>>> c.stack_size
1
>>> c.BUILD_SLICE(2)
Traceback (most recent call last):
  ...
AssertionError: Stack underflow

>>> dis(c.code())
  0           0 LOAD_CONST               1 (1)
              3 LOAD_CONST               2 (2)
              6 BUILD_TUPLE              2
              9 UNPACK_SEQUENCE          2
             12 DUP_TOPX                 2
             15 LOAD_CONST               3 (3)
             18 BUILD_LIST               5
             21 UNPACK_SEQUENCE          5
             24 BUILD_SLICE              3
             27 BUILD_SLICE              3

Stack levels for MAKE_FUNCTION/MAKE_CLOSURE:

>>> c = Code()
>>> c.MAKE_FUNCTION(0)
Traceback (most recent call last):
  ...
AssertionError: Stack underflow

>>> c.LOAD_CONST(1)
>>> c.LOAD_CONST(2) # simulate being a function
>>> c.MAKE_FUNCTION(1)
>>> c.stack_size
1

>>> c = Code()
>>> c.MAKE_CLOSURE(0, 0)
Traceback (most recent call last):
  ...
AssertionError: Stack underflow

>>> c = Code()
>>> c.LOAD_CONST(1) # closure
>>> if sys.version>='2.5': c.BUILD_TUPLE(1)
>>> c.LOAD_CONST(2) # default
>>> c.LOAD_CONST(3) # simulate being a function
>>> c.MAKE_CLOSURE(1, 1)
>>> c.stack_size
1

>>> c = Code()
>>> c.LOAD_CONST(1)
>>> c.LOAD_CONST(2)
>>> if sys.version>='2.5': c.BUILD_TUPLE(2)
>>> c.LOAD_CONST(3) # simulate being a function
>>> c.MAKE_CLOSURE(0, 2)
>>> c.stack_size
1

Labels and backpatching forward references:

>>> c = Code()
>>> where = c.here()
>>> c.LOAD_CONST(1)
>>> c.JUMP_FORWARD(where)
Traceback (most recent call last):
  ...
AssertionError: Relative jumps can't go backwards

"Call" combinations:

>>> c = Code()
>>> c.set_lineno(1)
>>> c(Call(Global('foo'), [Local('q')],
...        [('x',Const(1))], Local('starargs'))
... )
>>> c.RETURN_VALUE()
>>> dis(c.code())
  1           0 LOAD_GLOBAL              0 (foo)
              3 LOAD_FAST                0 (q)
              6 LOAD_CONST               1 ('x')
              9 LOAD_CONST               2 (1)
             12 LOAD_FAST                1 (starargs)
             15 CALL_FUNCTION_VAR      257
             18 RETURN_VALUE


>>> c = Code()
>>> c.set_lineno(1)
>>> c(Call(Global('foo'), [Local('q')], [('x',Const(1))],
...        None, Local('kwargs'))
... )
>>> c.RETURN_VALUE()
>>> dis(c.code())
  1           0 LOAD_GLOBAL              0 (foo)
              3 LOAD_FAST                0 (q)
              6 LOAD_CONST               1 ('x')
              9 LOAD_CONST               2 (1)
             12 LOAD_FAST                1 (kwargs)
             15 CALL_FUNCTION_KW       257
             18 RETURN_VALUE

Cloning:

>>> c = Code.from_function(lambda (x,y):1, True)
>>> dis(c.code())
  1           0 LOAD_FAST                0 (.0)
              3 UNPACK_SEQUENCE          2
              6 STORE_FAST               1 (x)
              9 STORE_FAST               2 (y)

>>> c = Code.from_function(lambda x,(y,(z,a,b)):1, True)
>>> dis(c.code())
  1           0 LOAD_FAST                1 (.1)
              3 UNPACK_SEQUENCE          2
              6 STORE_FAST               2 (y)
              9 UNPACK_SEQUENCE          3
             12 STORE_FAST               3 (z)
             15 STORE_FAST               4 (a)
             18 STORE_FAST               5 (b)

Constant folding for *args and **kw:

>>> c = Code()
>>> c.return_(Call(Const(type), [], [], (1,)))
>>> dis(c.code())
  0           0 LOAD_CONST               1 (<type 'int'>)
              3 RETURN_VALUE


>>> c = Code()
>>> c.return_(Call(Const(dict), [], [], [], Const({'x':1})))
>>> dis(c.code())
  0           0 LOAD_CONST               1 ({'x': 1})
              3 RETURN_VALUE

Try/Except stack level tracking:

>>> def class_or_type_of(expr):
...     return Suite([expr, TryExcept(
...         Suite([Getattr(Code.DUP_TOP, '__class__'), Code.ROT_TWO]),
...         [(Const(AttributeError), Call(Const(type), (Code.ROT_TWO,)))]
...     )])

>>> def type_or_class(x): pass
>>> c = Code.from_function(type_or_class)
>>> c.return_(class_or_type_of(Local('x')))
>>> dump(c.code())
                LOAD_FAST                0 (x)
                SETUP_EXCEPT            L1
                DUP_TOP
                LOAD_ATTR                0 (__class__)
                ROT_TWO
                POP_BLOCK
                JUMP_FORWARD            L3
        L1:     DUP_TOP
                LOAD_CONST               1 (<...exceptions.AttributeError...>)
                COMPARE_OP              10 (exception match)
                JUMP_IF_FALSE           L2
                POP_TOP
                POP_TOP
                POP_TOP
                POP_TOP
                LOAD_CONST               2 (<type 'type'>)
                ROT_TWO
                CALL_FUNCTION            1
                JUMP_FORWARD            L3
        L2:     POP_TOP
                END_FINALLY
        L3:     RETURN_VALUE

>>> type_or_class.func_code = c.code()
>>> type_or_class(23)
<type 'int'>

Demo: "Computed Goto"/"Switch Statement"

Finally, to give an example of a creative way to abuse Python bytecode, here is an implementation of a simple "switch/case/else" structure:

>>> from peak.util.assembler import LOAD_CONST, POP_BLOCK

>>> import sys
>>> WHY_CONTINUE = {'2.3':5}.get(sys.version[:3], 32)

>>> def Switch(expr, cases, default=Pass, code=None):
...     if code is None:
...         return expr, tuple(cases), default
...
...     d = {}
...     else_block  = Label()
...     cleanup     = Label()
...     end_switch  = Label()
...
...     code(
...         end_switch.SETUP_LOOP,
...             Call(Const(d.get), [expr]),
...         else_block.JUMP_IF_FALSE,
...             WHY_CONTINUE, Code.END_FINALLY
...     )
...
...     cursize = code.stack_size - 1   # adjust for removed WHY_CONTINUE
...     for key, value in cases:
...         d[const_value(key)] = code.here()
...         code.stack_size = cursize
...         code(value)
...         if code.stack_size is not None: # if the code can fall through,
...             code(cleanup.JUMP_FORWARD)  # jump forward to the cleanup
...
...     code(
...         else_block,
...             Code.POP_TOP, default,
...         cleanup,
...             Code.POP_BLOCK,
...         end_switch
...     )
>>> Switch = nodetype()(Switch)

>>> c = Code()
>>> c.co_argcount=1
>>> c(Switch(Local('x'), [(1,Return(42)),(2,Return("foo"))], Return(27)))
>>> c.return_()

>>> f = new.function(c.code(), globals())
>>> f(1)
42
>>> f(2)
'foo'
>>> f(3)
27

>>> dump(c.code())
                SETUP_LOOP              L2
                LOAD_CONST               1 (<...method get of dict...>)
                LOAD_FAST                0 (x)
                CALL_FUNCTION            1
                JUMP_IF_FALSE           L1
                LOAD_CONST               2 (...)
                END_FINALLY
                LOAD_CONST               3 (42)
                RETURN_VALUE
                LOAD_CONST               4 ('foo')
                RETURN_VALUE
        L1:     POP_TOP
                LOAD_CONST               5 (27)
                RETURN_VALUE
                POP_BLOCK
        L2:     LOAD_CONST               0 (None)
                RETURN_VALUE

TODO

  • Test NAME vs. FAST operators flag checks/sets
  • Test code flags generation/cloning
  • Exhaustive tests of all opcodes' stack history effects
  • Test wide jumps and wide argument generation in general

PythonPowered
EditText of this page (last modified 2010-08-02 17:38:15)
FindPage by browsing, title search , text search or an index
Or try one of these actions: AttachFile, DeletePage, LikePages, LocalSiteMap, SpellCheck